Radio waves have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation.
Answer: 24.13 g Cu
Explanation:
<u>Given for this question:</u>
M of CuO = 30 g
m of CuO = 79.5 g/mol
Number of moles of CuO = (given mass ÷ molar mass) = (30 ÷ 79.5) mol
= 0.38 mol
The max number of CuO (s) that can be produced by the reaction of excess methane can be solved with this reaction:
CuO(s) + CH4(l) ------> H2O(l) + Cu(s) + CO2(g)
The balanced equation can be obtained by placing coefficients as needed and making sure the number of atoms of each element on the reactant side is equal to the number of atoms of each element on the product side
4CuO(s) + CH4(l) ----> 2H2O(l) + 4Cu(s) + CO2(g)
From the stoichiometry of the balanced equation:
4 moles of CuO gives 4 moles of Cu
1 mole of CuO gives 1 mol of Cu
0.38 mol of CuO gives 0.38 mol of Cu
Therefore, the grams of Cu that can be produced = 0.38 × molar mass of Cu
= 0.38 × 63.5 g
= 24.13 grams
Therefore, 24.13 grams of copper could be produced by the reaction of 30.0 of copper oxide with excess methane
It would likely be HF. It displays hydrogen bonding.
Answer:
The speed of an electron is 0.01908 m/s.
Explanation:
De-Broglie wavelength is given by:

where,
= wavelength of a particle
h = Planck's constant = 
m = mass of particle
v = velocity of the particle
Velocity of an electron = v
Mass of an electron = 
Wavelength of electron is twice the displacement in seconds which is velocity of an electron.
Then.wavelength of an electron = 

v = 0.01908 m/s
The speed of an electron is 0.01908 m/s.
The number of protons in an atoms determines the atoms identity. Electrons determine the electrical charge.