Something that is special to you or event that means alot to you
Physical because it is still H2O
Calcium fluoride.
Ca is metal, F is non-metal, so they form ionic bond.
Ca as metal can form only positive ion. Ca in the second group, so the charge of Ca ion is 2+. Ca²⁺
F is in the 17th group, so it has 7 electrons on the last level. It is non-metal, non-metal, so it has negative charge -(8-7)=-1. "8" because on the last level cannot be more than 8 electrons. F-ion is F¹⁻.
Ca²⁺ F¹⁻
Number of positive charges should be equal to number of negative charges,
Formula of calcium fluoride
CaF2.
2 atoms Fluorine bond with Calcium.
Answer:
13mL
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above, we obtained the following data:
Mole ratio of the acid (nA) = 1
Mole ratio of the base (nB) = 1
Step 2:
Data obtained from the question.
This includes the following:
Molarity of the acid (Ma) = 6M
Volume of the acid (Va) =?
Volume of the base (Vb) = 39mL
Molarity of the base (Mb) = 2M
Step 3:
Determination of the volume of the acid.
Using the equation:
MaVa/MbVb = nA/nB, the volume of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
6 x Va / 2 x 39 = 1/1
Cross multiply to express in linear form
6 x Va = 2 x 39
Divide both side by 6
Va = (2 x 39)/6
Va = 13mL
Therefore, the volume of the acid (HNO3) needed for the reaction is 13mL
To count the number of valence electrons we look at the electronic configuration and add the electrons form the electronic shell with the highest principal quantum number.
Rb: [Kr] 5s¹ - 1 valence electron
Xe: [Kr] 5s² 4d¹⁰ 5p⁶ - 8 valence electrons
Sb: [Kr] 5s² 4d¹⁰ 5p³ - 5 valence electrons
I: [Kr] 5s² 4d¹⁰ 5p⁵ - 7 valence electrons
In: [Kr] 5s² 4d¹⁰ 5p¹ - 3 valence electrons
Rank from most to fewest valence electrons:
Xe > I > Sb > In > Rb