The answer is homogenous i think
Answer:
0.5133805136 moles.
Explanation:
1 gram of Al2(Co3)3 equals 0.0017112683785004 moles, we need the amount of moles produced in 300 grams of Al2(CO3)3, so we have to multiply 1 gram of Al2(CO3)3 times 300: 0.0017112683785004 x 300, in conclusion,
300 grams of Al2(Co3)3 equals 0.5133805136.
Answer:
ClO₄⁻
Explanation:
When an ion is hydrated it is surrounded by water molecules, thus, as small is the ion, more molecules may surround it, and it will be more strongly hydrated. In this case, the Cl is small than the S atom, because Cl is from group 17, and S from group 16, and Cl has more valence electrons, which will be more attracted to the nuclei.
So, ClO₄⁻ will be more strongly hydrated.
Strong acids are completely ionised and weak acids are partly ionised
Answer:
Delta H for endothermic reaction is positive-True. This is because an endothermic reaction absorbs heat energy, therefore more energy is retained inside the product of the reaction system than the reactants, as the value of deltaH is greater than Zero.
Delta H for an exothermic reaction is positive. This is false. Because in an exothermic reaction heat is liberated to the surrounding environment. therefore the value of thus the outer environment contains more energy than the internal environments, thus the enthalpy of the reactants is greater than that of the products.
when the energy is transferred as heat from system to surroundings, deltaH is negative. True . This is true because the surrounding environment gain heat energy, (positive)while the system loses it,(negative) therefore delta H is negative.
when the energy is transferred as heat from surroundings to system, deltaH is negative. False. This is positive, because now the environments loses heat, (negative) while the systems gains heat,( positive) therefore delta H of the system is positive. endothermic
the evaporation of water is an exothermic process-False, This is an endothermic reaction in which water molecules need to gain heat energy from the surrounding environments to increase the average kinetic energy of collusion to escape the intermolecular forces to escape as steam.
Combustion reaction is exothermic. True., because heat energy is transferred to the surrounding from the internal system. The energy needed for the formation of new bonds in the products is higher than the energy for breaking of original bonds in the reactants. Thus more heat is liberated.
Explanation: