Answer:
well you could get some green goblin it disolves all the c rap in sink
Explanation:
Answer:
i)ω=3600 rad/s
ii)V=7059.44 m/s
iii)F=1245.8 N
Explanation:
i)
We know that angular speed given as

We know that for one revolution
θ=2π
Given that time t= 2 hr
So
ω=θ/t
ω=2π/2 = π rad/hr
ω=3600 rad/s
ii)
Average speed V

Where M is the mass of earth.
R is the distance
G is the constant.
Now by putting the values


V=7059.44 m/s
iii)
We know that centripetal fore given as

Here given that m= 200 kg
R= 8000 km
so now by putting the values


F=1245.8 N
Answer:
the maximum length of specimen before deformation is found to be 235.6 mm
Explanation:
First, we need to find the stress on the cylinder.
Stress = σ = P/A
where,
P = Load = 2000 N
A = Cross-sectional area = πd²/4 = π(0.0037 m)²/4
A = 1.0752 x 10^-5 m²
σ = 2000 N/1.0752 x 10^-5 m²
σ = 186 MPa
Now, we find the strain (∈):
Elastic Modulus = Stress / Strain
E = σ / ∈
∈ = σ / E
∈ = 186 x 10^6 Pa/107 x 10^9 Pa
∈ = 1.74 x 10^-3 mm/mm
Now, we find the original length.
∈ = Elongation/Original Length
Original Length = Elongation/∈
Original Length = 0.41 mm/1.74 x 10^-3
<u>Original Length = 235.6 mm</u>
Answer:
it is f all of the above
Explanation:
let me know if im right
im not positive if im right but i should be right
Why did you put this on here when you know the answer lol