Answer:
<em>55%</em>
Explanation:
hot reservoir = 1100 K
cold reservoir = 500 K
<em>This is a Carnot system</em>
For a Carnot system, maximum efficicency of the system is given as
Eff = 1 - ![\frac{Tc}{Th}](https://tex.z-dn.net/?f=%5Cfrac%7BTc%7D%7BTh%7D)
where Tc = temperature of cold reservoir = 500K
Th = temperature of hot reservoir = 1100 K
Eff = 1 - ![\frac{500}{1100}](https://tex.z-dn.net/?f=%5Cfrac%7B500%7D%7B1100%7D)
Eff = 1 - 0.45 = 0.55 or<em> 55%</em>
Answer: No
Explanation:
Length= 2cm= 20mm
Now meter stick can read to nearest millimeter.
It is given that length is to be measured with a precision of 1% of 20mm= 1/100 * 20= 0.2mm
Since the least count is 1mm of meter stick and precision required is less than that. So, meter stick cannot be used for this, travelling microscope can be used for this as it can read to 0.1mm.
Answer:
Aerobic biological treatment process
Explanation:
Aerobic biological treatment process in which micro-organisms, in the presence of oxygen, metabolize organic waste matter in the water, thereby producing more micro-organisms and inorganic waste matter like CO₂, NH₃ and H₂O.
9514 1404 393
Answer:
13/80
Explanation:
The product is ...
(1 3/10)×(1/8) = (13/10)×(1/8) = (13×1)/(10×8) = 13/80
Answer:
Tmax= 46.0 lb-in
Explanation:
Given:
- The diameter of the steel rod BC d1 = 0.25 in
- The diameter of the copper rod AB and CD d2 = 1 in
- Allowable shear stress of steel τ_s = 15ksi
- Allowable shear stress of copper τ_c = 12ksi
Find:
Find the torque T_max
Solution:
- The relation of allowable shear stress is given by:
τ = 16*T / pi*d^3
T = τ*pi*d^3 / 16
- Design Torque T for Copper rod:
T_c = τ_c*pi*d_c^3 / 16
T_c = 12*1000*pi*1^3 / 16
T_c = 2356.2 lb.in
- Design Torque T for Steel rod:
T_s = τ_s*pi*d_s^3 / 16
T_s = 15*1000*pi*0.25^3 / 16
T_s = 46.02 lb.in
- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:
T = min ( 2356.2 , 46.02 )
T = 46.02 lb-in