Answer:
0.245 m^3/s
Explanation:
Flow rate through pipe a is 0.4 m3/s Parallel pipes have a diameter D = 30 cm => r = 15 cm = 0.15 m Length of Pipe a = 1000m Length of Pipe b = 2650m Temperature = 15 degrees Va = V / A = (0.4m3/s) / (3.14 (0.15m)^2) = 5.66 m/s h = (f(LV^2)) / D2g (fa(LaVa^2)) / Da2g = (fb(LbVb^2)) / Da2g and Da = Db; fa = fb LaVa^2 = LbVb^2 => La/Lb = Vb^2/Va^2 Vd^2 = Va^2(La/Lb) => Vb = Va(La/Lb)^(1/2) Vb = 5.66 (1000/2650)^(1/2) => 5.66 x 0.6143 = 3.4769 m/s Vb = 3.4769 m/s V = AVb = 3.14(0.15)^2 x 3.4769 m/s = 0.245 m^3/s
Answer:
a) Internal energy
Explanation:
As we know that internal energy is a point function so it did not depends on the path ,it depends at the initial and final states of process.All point function property did not depends on the path.Internal energy is a exact function.
Work and heat is a path function so these depend on the path.They have different values for different path between two states.Work and heat are in exact function.
We know that in ir-reversible process entropy will increase so entropy will be different for reversible and ir-reversible processes.
Answer:
Explanation:
In this problem you need to define the force that acts upon a beam in a 3 point bending problem. I put a picture of the problem taken from Wikipedia:
In this problem the flexural strength is defined with the following formula:
where F is the force applied, L the length between the two rods, b the width of the ceramic block and d it's height.
The force is then defined as: