Answer:
Explained
Explanation:
This situation can occur because of various factors such as:
- Gradual deterioration of lubrication and coolant.
- change of environmental condition such as temperature, humidity, moisture, etc.
- Change in the properties of incoming raw material
- An increase or decrease in the temperature of the heat treating operation
- Debris interfering with the manufacturing process.
Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
Answer:
The power developed by engine is 167.55 KW
Explanation:
Given that

Mean effective pressure = 6.4 bar
Speed = 2000 rpm
We know that power is the work done per second.
So

We have to notice one point that we divide by 120 instead of 60, because it is a 4 cylinder engine.
P=167.55 KW
So the power developed by engine is 167.55 KW
A robot is a machine. It is often, or almost always, automatic, which means that it is able to perform activities on its own without the aid of external variables, like humans. It moves in the way that it was originally programmed, or designed to act. These actions are described as 'intents' of its own.
Answer:
Heat transfer = 2.617 Kw
Explanation:
Given:
T1 = 300 k
T2 = 440 k
h1 = 300.19 KJ/kg
h2 = 441.61 KJ/kg
Density = 1.225 kg/m²
Find:
Mass flow rate = 1.225 x [1.3/60]
Mass flow rate = 0.02654 kg/s
mh1 + mw = mh2 + Q
0.02654(300.19 + 240) = 0.02654(441.61) + Q
Q = 2.617 Kw
Heat transfer = 2.617 Kw