1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novay_Z [31]
3 years ago
9

Compute the electrical resistivity of a cylindrical silicon specimen 7.0 mm (0.28 in.) diameter and 57 mm (2.25 in.) in length i

n which a current of 0.25 A passes in an axial direction. A voltage of 24 V is measured across two probes that are separated by 45 mm (1.75 in.).
Engineering
1 answer:
snow_tiger [21]3 years ago
8 0
No no no no no no no no no no
You might be interested in
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compres
natima [27]

Answer:

a) The Net power developed in this air-standard Brayton cycle is 43.8MW

b) The rate of heat addition in the combustor is 84.2MW

c) The thermal efficiency of the cycle is 52%

Explanation:

To solve this cycle we need to determinate the enthalpy of each work point of it. If we consider the cycle starts in 1, the air is compressed until 2, is heated until 3 and go throw the turbine until 4.

Considering this:

h_{i} =T_{i}C_{pair}=T_{i}1.005\frac{KJ}{Kg K}

\mu_{comp}=\frac{h_{2S}-h_{1}}{h_{2}-h_{1}}

\mu_{comp}=\frac{h_{3}-h_{4}}{h_{3}-h_{4S}}

G_{m} =\frac{PMG_{v}}{TR} =59.73\frac{Kg}{s}

Now we can calculate the enthalpy of each work point:

h₁=281.4KJ/Kg

h₂=695.41KJ/Kg

h₃=2105KJ/Kg

h₄=957.14KJ/Kg

The net power developed:

P_{net}=P_{Tur}-P_{Comp}=G_{m}((h_{3}-h_{4})-(h_{2}-h_{1}))

The rate of heat:

Q=G_{m}(h_{3}-h_{2})

The thermal efficiency:

\mu_{ther}=\frac{P_{net}}{Q}

3 0
2 years ago
Question 7.1: Two possible overhead valve combustion chambers are being considered – the first has two valves; the second has fo
AleksandrR [38]

Answer:

1) The adoption of the second design we can see that the total valve perimeter is increased by 60.8%

2) Increase in flow are : 29%

3) Additional benefits in using 4 valves per cylinder:

a)For the purpose of controlling the combustion process, the inlet valves will give more flexibility

b) There is a larger valve throat areas for the flow of gas

Explanation:

1) Perimeter of the first possible overhead valve combustion chamber with two valves:

P₂ = πd = π × 23 = 72.26mm

Perimeter of the second possible overhead valve combustion chamber with four valves:

P₄ = π2d = π × 18.5 × 2 = 116.24 mm

If second design is adopted, percentage increase = ((P₄ - P₂)/P₂)×100

     = ((116.24 - 72.26)/72.26)×100 = 0.6086 ×100 = 60.86%

Therefore, the total valve perimeter is shown to have increased by 60.8%

2) Formula for flow Area (A) = P × L = πkd²

Area of the first possible overhead valve combustion chamber with two valves: A₂ = πkd² = πk(23)² = 1662k mm²

Area of the first possible overhead valve combustion chamber with four valves: A₄ = πkd² = 2πk(18.5)² = 2150k mm²

The percentage increase in flow area: ((A₄ - A₂)/A₄)×100 = ((2150 - 1662)/2150)×100 = 29%

3) The additional benefits of using are:

a) For the purpose of controlling the combustion process, the inlet valves will give more flexibility

b) There is a larger valve throat areas for the flow of gas

           

7 0
2 years ago
The acceleration of a particle is given by a = 2t − 10, where a is in meters per second squared and t is in seconds. Determine t
tensa zangetsu [6.8K]

Answer

given,

a = 2 t - 10

velocity function

we know,

\dfrac{dv}{dt}=a

\dfrac{dv}{dt}=(2t-10)

integrating both side

\int dv =\int (2t -10) dt

 v = t² - 10 t + C

at t = 0   v = 3

so, 3 = 0 - 0 + C

     C = 3

Velocity function is equal to v = t² - 10 t + 3

Again we know,

\dfrac{dx}{dt}=v

\dfrac{dx}{dt}=(t^2-10t + 3)

integrating both side

\int dx =\int (t^2-10t + 3)dt

x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t + C

now, at t= 0 s = -4

-4 = \dfrac{0^3}{3}- 10\dfrac{0^2}{2} + 0 + C

C = -4

So,

x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t-4

Position function is equal to x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t-4

8 0
3 years ago
The formula for calculating risk considering risk perception is ?​
s2008m [1.1K]

Answer:

risk = probability x loss

Explanation:

3 0
2 years ago
If a 2 1/8 inch diameter medium carbon steel rod is to be turned between centers to a 2 inch diameter using high speed cutting b
Crank

Answer:

I think 1 31/32

8 0
3 years ago
Other questions:
  • Consider the series solution, Equation 5.42, for the plane wall with convection. Calculate midplane (x* = 0) and surface (x* = 1
    5·1 answer
  • List and describe three classifications of burns to the body.
    13·2 answers
  • State 2 reasons on why blind spot checks are important
    5·1 answer
  • Which of the following tools might civil engineers use when designing roads in a recently constructed industrial park?
    7·2 answers
  • What is a magnitute?
    5·2 answers
  • Learning the key concepts of each approach is essential to successful management of a project. What type of unpredictability is
    7·1 answer
  • Which of the following allows team members to visualize a design model from a variety of perspectives?
    12·2 answers
  • Principals of Construction intro
    11·1 answer
  • Explain moment of inertia<br>​
    9·1 answer
  • Please help me. I have no idea what I'm doing.​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!