1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phoenix [80]
3 years ago
12

I know this but my brains not working

Mathematics
1 answer:
Masja [62]3 years ago
8 0

Answer:you just find the answer from the 2 fractions you have

Step-by-step explanation:

You might be interested in
The sun is behind a building and casting a shadow. How long is the shadow if the building is 25 feet tall and the angle, of the
Nana76 [90]
ANSWER

The length of the shadow is 49 ft to nearest feet.

EXPLANATION

We can find the length of the shadow using the tangent ratio.

Recall that,

\tan(27 \degree) = \frac{opposite}{adjacent}
From the diagram, the length of the shadow is the side of the triangle that is adjacent to the 27° angle

\tan(27 \degree) = \frac{45}{adjacent}

This implies that,

adjacent = \frac{45}{tan27 \degree}

adjacent = 49 .065

4 0
3 years ago
Is 56 ft, 65 ft, 16 ft a right triangle
Debora [2.8K]
No, it isn't a right triangle.
7 0
3 years ago
Read 2 more answers
If two angles are complementary each angle is called a complement of the other if two angles are supplementary each angle is cal
professor190 [17]
Remember that complementary angles add to 90 degrees.

so therefor, you can find the complement of m<A by solving 

90 - 77 = A

A = 13 degrees

^^^ This explains the second part.

The compliment of a compliment can be found by subtracting the known compliment from 90 :) 
8 0
3 years ago
Read 2 more answers
Which of the following lists of ordered pairs is a function? A.(2, 4), (3, 9), (4, 16), (5, 25) B.(0, 2), (4, 2), (0, –4), (4, –
marta [7]
A, is the answer because each input has one and only one output
3 0
3 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Other questions:
  • The graph of f consists of line segments, as shown in the figure.
    11·1 answer
  • Sam has $40. He buys a book for $12.99 and a puzzle for $15.49.
    12·2 answers
  • How much would you need to deposit in an account now in order to have $6,000 in the account in 8 years? Assume the account earns
    10·1 answer
  • Your bank account has -$15 in it. you deposit $5 per day
    10·1 answer
  • Marci has45 red buttns and 60 yellow butto a she wants to use all of the butt s a d divide each color equally into boxes what is
    15·1 answer
  • What do the values of m and b represent in the equation y mx +b?
    5·1 answer
  • Shazia sells 25x^2+5x+5 flowers in one day. If she sells the same number of flowers each day for rs 5x each , how much money wil
    11·1 answer
  • HELP RIGHTTT AWAYYYYY PLSSSSSS
    5·1 answer
  • R,u,t,s are positive <br><br> RXS=15<br> SXT=3<br> TXV=7<br> RXV=??
    7·1 answer
  • What is the area of the figure below A: 22cm2 B: 24cm2 C: 48.5cm2 D: 56cm2
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!