The answer to this question will be c
Answer:
.0556 L
Explanation:
First, convert the 1.35 M to 1.35 mol/L in order for the units to correctly cancel out.
Then, multiply (0.0725 moles Na2CO3/1) times (L/ 1.35 mol).
Finally, the answer will be .0556 L.
<h3 />
Answer : The total mass of oxygen gas released in the reaction will be, 12.8 grams
Explanation :
Law of conservation of mass : It states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical reaction will be,

According to the law of conservation of mass,
Total mass of reactant side = Total mass of product side
Total mass of
= Total mass of 
or,
Total mass of
= Mass of
+ Mass of 
As we are given :
Total mass of
= 16.12 grams
The mass of
= 9.72 grams
So,
Total mass of
= Mass of
+ Mass of 


Therefore, the total mass of oxygen gas released in the reaction will be, 12.8 grams
A solution with a pH of 6.52 has a hydronium ion concentration of 3.02x10-7 mol/L and a hydroxide ion concentration of 3.31x10-8 mol/L.
The hydronium ion concentration of a solution can be calculated from pH by using
. For a pH of 6.52, hydronium ion concentration is 3.02x10-7 mol/L.
The concentration of hydroxide ions can be determined by identifying the value of pOH. The sum of pOH and pH is equal to 14, which is based on the negative logarithm of the ion-product constant of water. At a pH of 6.52, pOH is equal to 7.48.
The relationship between pOH and hydroxide ion concentration is the same as the relationship between pH and hydronium ion concentration. With this, the hydroxide ion concentration at pOH of 7.48 is
or 3.31x10-8 mol/L.
For more information regarding pH and pOH, please refer to the link brainly.com/question/13557815.
#SPJ4
<u />C. Water is an inexhaustible energy resource among these options. Coal, oil, and natural gas we can run of, but for the foreseeable future, there will always be water.