Answer: nothing. It remains undissolved
Explanation: saturated = dissolved as much solute as solvent can contain
Answer:
The odor of a substance is a physical property. That would be your answer.
Explanation:
Physical Properties
Physical properties are properties that can be measured or observed without changing the chemical nature of the substance. Some examples of physical properties are:
color (intensive)
density (intensive)
volume (extensive)
mass (extensive)
boiling point (intensive): the temperature at which a substance boils
melting point (intensive): the temperature at which a substance melts
Chemical Properties
Remember, the definition of a chemical property is that measuring that property must lead to a change in the substance’s chemical structure. Here are several examples of chemical properties:
Heat of combustion is the energy released when a compound undergoes complete combustion (burning) with oxygen. The symbol for the heat of combustion is ΔHc.
Chemical stability refers to whether a compound will react with water or air (chemically stable substances will not react). Hydrolysis and oxidation are two such reactions and are both chemical changes.
Flammability refers to whether a compound will burn when exposed to flame. Again, burning is a chemical reaction—commonly a high-temperature reaction in the presence of oxygen.
The preferred oxidation state is the lowest-energy oxidation state that a metal will undergo reactions in order to achieve (if another element is present to accept or donate electrons).
The standard addition equation is as followsI_(S+X) (V/V_O )=I_X+I_X/[X]_i [S]_4 (V_S/V_0 ) Here, [X]_i is the initial concentration of analyte, [S]_i is the initial concentration of standard, I_X is signal for analyte, I_(S+X) is signal for standard and analyte, V_0 is the initial volume, V_S is the added standard volume, and V is the total volume.Added volume of standard V_S is-23.3 mL. Initial volume of the sample V_0 is 10.00 mL. Initial concentration of standard ([S]_i) is 0.156 ng/mL.[X]_i= -[S]_i (V_S/V_0 )〖[X]〗_(i )= -(0.156 ng/mL)((-23.3 mL)/(10.00 mL))=0.363 ng/mL
Concentration of U(III) in ground sample is 0.363 ng/mL
Answer:
Heat required = 1.23×10⁵J
Explanation:
Given:
Mass (m) = 500 gram
Specific heat = 6,090 J/g
heat of fusion = 247 J/g.
Find:
Heat required
Computation:
Heat required = 247 J/g× 500 g
Heat required = 1.23×10⁵J
Answer:
is considered as the limiting reagent for this reaction.
Explanation:
Limiting reagent is the reagent which limits the formation of the product.
Excess reagent is the reagent which is present in excess in a chemical reaction.
For the combustion of acetylene, the reaction follows:

By Stoichiometry,
5 moles of oxygen gas reacts with 2 moles of acetylene.
So, 81 moles of oxygen gas will react with =
= 32.4 moles of acetylene.
As, the required amount of acetylene is less than the given amount. So, it is considered as an excess reagent and oxygen gas is the limiting reagent.