Answer:
4.52 x 10¹⁴ cycles/s
Explanation:
From c = f·λ => f = c/λ = (3.0 x 10⁸ m/s)/(6.63 x 10⁻⁷m) = 4.52 x 10¹⁴ cycles/s.
f = frequency = ?
λ = wavelength = 6.63 x 10⁻⁷ meter
c = speed of light in vacuum = 3.0 x 10⁸ meters/s
Answer: Option (B) is the correct answer.
Explanation:
- An ionic bond is formed by the sharing of electrons between two chemically combining atoms.
In an ionic bond, there occurs attraction between oppositely charged ions due to which there occurs strong forces of attraction between them. Therefore, ionic bonds are the strongest bonds.
- A polar covalent bond is formed due to unequal sharing of electrons between the combining atoms.
For example,
is a polar covalent compound. Partial opposite charges tend to develop on the atoms of a polar covalent compound.
- A non-polar covalent bond is formed due to equal sharing of electrons between the combining atoms.
For example,
is a non-polar covalent molecule. No partial charges will be there on the atoms of a non-polar covalent molecule.
- A hydrogen bond is defined as the bond formed between a hydrogen atom and an electronegative atom.
For example, in HCl compound there occurs hydrogen bonding.
In this type of bond, dipole-dipole attractive interactions tend to take place. And, strength of hydrogen bonds is very weak.
Thus, we can conclude that given bond types are arranged in order of increasing strength as follows.
Hydrogen bonds < non-polar covalent bonds < polar covalent bonds < ionic bonds
Answer : The temperature of liquid is, 369.9 K
Explanation :
The Clausius- Clapeyron equation is :

where,
= vapor pressure of liquid at 373 K = 681 torr
= vapor pressure of liquid at normal boiling point = 760 torr
= temperature of liquid = ?
= normal boiling point of liquid = 373 K
= heat of vaporization = 40.7 kJ/mole = 40700 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:


Hence, the temperature of liquid is, 369.9 K
Answer:
True
Explanation:
The first artificial use of a PGR was to stimulate the production of flowers on pineapple plants. They are now used widely in agriculture. Plant hormones are also used in turf management to reduce the need to mow, to suppress seedheads, and to suppress other types of grass.
Solvation describes the interaction of solvent with dissolved molecules.