Answer:
A. The time taken for the car to stop is 3.14 secs
B. The initial velocity is 81.64 ft/s
Explanation:
Data obtained from the question include:
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Final velocity (V) = 0
Time (t) =?
Initial velocity (U) =?
A. Determination of the time taken for the car to stop.
Let us obtain an express for time (t)
Acceleration (a) = Velocity (V)/time(t)
a = V/t
Velocity (V) = distance (s) /time (t)
V = s/t
a = s/t^2
Cross multiply
a x t^2 = s
Divide both side by a
t^2 = s/a
Take the square root of both side
t = √(s/a)
Now we can obtain the time as follow
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Time (t) =..?
t = √(s/a)
t = √(256/26)
t = 3.14 secs
Therefore, the time taken for the car to stop is 3.14 secs
B. Determination of the initial speed of the car.
V = U + at
Final velocity (V) = 0
Deceleration (a) = –26ft/s2
Time (t) = 3.14 sec
Initial velocity (U) =.?
0 = U – 26x3.14
0 = U – 81.64
Collect like terms
U = 81.64 ft/s
Therefore, the initial velocity is 81.64 ft/s
Mass is indirectly proportional to acceleration, so, lighter the object greater would be it's acceleration...
A) 0.10 kg is lightest among them, so it's your answer
15.49 should be the answer if that is 12 watt battery.
The magnitude of the electrostatic force between two charges is given by:

where
ke is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
We can see that the magnitude of the force is directly proportional to the charges. This means that when one of the charges is doubled, the magnitude of the electrostatic force will double as well, so the correct answer is
A) <span>The magnitude of the electrostatic force doubles</span>
Thermal- transfer of heat thru space
Radiation- the average amount of energy of motion in the molecules of a substance
Thermometer- a thin glass tube with a bulb on one end that contains a liquid, usually mercury or colored alcohol
Brainly?