Answer:
equation (4.16) depends on Boyle's law and Charles' law. The above relates the adjustment in perfect gas volume to the progressions in winning weight and temperature, separately. Moreover, equation (4.16) is alluded to as the condition of state for a perfect gas.
hope it helps:))
Answer:
(a) H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)
Explanation:
The equation for your buffer equilibrium is:
H₃PO₄(aq) + H₂O(ℓ) ⇌ H₃O⁺(aq)+ H₂PO₄⁻(aq)
(a) Adding H₃O⁺
The hydronium ions react with the basic dihydrogen phosphate ions.
H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) Adding OH⁻
The OH⁻ ions react with the more acidic hydronium ions.
OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)
The element is TELLURIUM. Tellurium has atomic number 52 with the electronic configuration of [Kr] 4d10 5s2 5p4. The element belongs to group 16 elements on the periodic table. It exhibits various oxidation states: +2, +4, +6, and -2. +4 is its most common oxidation state.
Explanation:
Bring to the boil. Carefully place the can in the saucepan, ensuring there's enough water to completely cover the can at all times, topping up water frequently throughout the cooking process. Simmer, uncovered for 3 hours. Ensure the can is completely covered with water at all times during cooking
Answer:
The more the temperature the less the effect if magnet