Answer:
battery
Explanation:
A battery contains stored chemical energy and converts it to electrical energy. (cK.12)
For the first part of this question, consider that "weight" can be described as mass x acceleration of gravity. Weight is expressed in Newtons. To solve for mass in this case, simply divide 9800N by 9.8m/s^2 (Earth's gravitational acceleration). This will give you a mass of 1000 kg. This mass is moved due to the net force supplied by the normal force from the rocket "pushing" off of Earth.
For the second part, we will use the equation F = ma, which is Newton's second law. For this, we know the m, or mass, is 1000 kg. Also, we know the a, or acceleration, will be 4 m/s^2. To solve for force, we will multiply both of these values. This gives a force of 4000 N. I hope this clears things up!
Answer:
Explanation:
Divide the total distance traveled by the total time spent traveling. This will give you your average speed. . So if Ben traveled 150 miles in 3 hours, 120 miles in 2 hours, and 70 miles in 1 hour, his average speed was about 57 mph.
No.
Since repeated measurements are taken and the average and 95% confidence interval are calculated, the possibility of the lack of agreement being a random error has been minimized or even eliminated.
<h3>What is a random error?</h3>
Random error is defined as the deviation of the total error from its mean value due to chance.
Random errors can result from the instrument not being precise or from mistakes by the researcher.
Random errors can be minimized by taking multiple readings and averaging the results.
Since repeated measurements are taken and the average and 95% confidence interval are calculated, the possibility of the lack of agreement being a ransom error has been minimized.
Learn more about random errors at: brainly.com/question/22041172
Answer:
a

b

Explanation:
From the question we are told that
The mass of the rock is 
The length of the small object from the rock is 
The length of the small object from the branch 
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as

substituting values


So at equilibrium the sum of the moment about the fulcrum is mathematically represented as

Here
is very small so
and 
Hence

=> 
substituting values


The mechanical advantage is mathematically evaluated as

substituting values

