1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alinara [238K]
3 years ago
13

An airplane of mass 1.60 ✕ 104 kg is moving at 66.0 m/s. The pilot then increases the engine's thrust to 7.70 ✕ 104 N. The resis

tive force exerted by air on the airplane has a magnitude of 5.00 ✕ 104 N. (a) Is the work done by the engine on the airplane equal to the change of the airplane's kinetic energy after it travels through some distance through the air? Yes No Correct: Your answer is correct. Is the mechanical energy conserved? Explain your answer. Energy is not conserved because there is friction. (b) Find the speed of the airplane after it has traveled 5.00 ✕ 102 m. Assume that the airplane is in level flight throughout the motion.
Physics
1 answer:
Ivan3 years ago
8 0

(a) No, because the mechanical energy is not conserved

Explanation:

The work-energy theorem states that the work done by the engine on the airplane is equal to the gain in kinetic energy of the plane:

W=\Delta K (1)

However, this theorem is only valid if there are no non-conservative forces acting on the plane. However, in this case there is air resistance acting on the plane: this means that the work-energy theorem is no longer valid, because the mechanical energy is not conserved.

Therefore, eq. (1) can be rewritten as

W=\Delta K + E_{lost}

which means that the work done by the engine (W) is used partially to increase the kinetic energy of the airplane (\Delta K) and part is lost because of the air resistance (E_{lost}).

(b) 77.8 m/s

First of all, we need to calculate the net force acting on the plane, which is equal to the difference between the thrust force and the air resistance:

F=7.70\cdot 10^4 N - 5.00 \cdot 10^4 N=2.70\cdot 10^4 N

Now we can calculate the acceleration of the plane, by using Newton's second law:

a=\frac{F}{m}=\frac{2.70\cdot 10^4 N}{1.60\cdot 10^4 kg}=1.69 m/s^2

where m is the mass of the plane.

Finally, we can calculate the final speed of the plane by using the equation:

v^2- u^2 = 2aS

where

v=? is the final velocity

u=66.0 m/s is the initial velocity

a=1.69 m/s^2 is the acceleration

S=5.00 \cdot 10^2 m is the distance travelled

Solving for v, we find

v=\sqrt{u^2+2aS}=\sqrt{(66.0 m/s)^2+2(1.69 m/s^2)(5.00\cdot 10^2 m)}=77.8 m/s

You might be interested in
PLEASE ANSWER, I NEED HELP
Scorpion4ik [409]

1) The gravitational force between Ellen and the moon is 1.56\cdot 10^{-3} N

2) The two forces are equal, while the acceleration of the bus is smaller than the acceleration of the bicycle.

Explanation:

1)

The magnitude of the gravitational force between two objects is given by

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m_1, m_2 are the masses of the two objects

r is the separation between them

In this problem, we have:

m_1 = 47 kg is the mass of Ellen

m_2 = 7.35\cdot 10^{22} kg is the mass of the moon

r=3.84\cdot 10^8 m is the distance between Ellen and the moon

Substituting, we find the gravitational force between Ellen and the moon:

F=(6.67\cdot 10^{-11})\frac{(47)(7.35\cdot 10^{22})}{(3.84\cdot 10^8)^2}=1.56\cdot 10^{-3} N

2)

We can analyze the forces acting in the collision between the bus and the bicycle by using Newton's third law of motion, which states that:

"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"

Applied to our problem, this means that the force exerted by the bus on the bicycle during the collision (action force) is equal (and opposite) to the force exerted by the bicycle on the bus (reaction force).

Now let's analyze the accelerations of the two vehicles. We can find the acceleration of each vehicle by using Newton's second law:

a=\frac{F}{m}

where

a is the acceleration

F is the force exerted on the vehicle

m is the mass of the vehicle

As we said previously, the force F exerted on each of the two vehicles: so, the acceleration only depends on the mass. In particular, the acceleration is inversely proportional to the mass: therefore, the larger the mass of the vehicle, the smaller the acceleration. This means that the acceleration of the bus is smaller than the acceleration of the bicycle.

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

And about Newton's third law:

brainly.com/question/11411375

#LearnwithBrainly

6 0
3 years ago
Explain what is the capacity of a battery in your own words​
Vinil7 [7]

Battery capacity (AH) is defined as a product of the current that is drawn from the battery while the battery is able to supply the load until its voltage is dropped to lower than a certain value for each cell.

4 0
3 years ago
The strength of the force of gravity depends on
givi [52]

The masses of the objects and how much distance there is between them

3 0
4 years ago
4. During which three months is the difference the same between average high temperature and average low temperature?
kkurt [141]

Answer:

1 Inch and 20 F

Explanation:

6 0
3 years ago
A toy rocket launcher can project a toy rocket at a speed as high as 35.0 m/s.
Anestetic [448]

Answer:

(a) 62.5 m

(b) 7.14 s

Explanation:

initial speed, u = 35 m/s

g = 9.8 m/s^2

(a) Let the rocket raises upto height h and at maximum height the speed is zero.

Use third equation of motion

v^{2}=u^{2}+2as

0^{2}=35^{2}- 2 \times 9.8 \times h

h = 62.5 m

Thus, the rocket goes upto a height of 62.5 m.

(b) Let the rocket takes time t to reach to maximum height.

By use of first equation of motion

v = u + at

0 = 35 - 9.8 t

t = 3.57 s

The total time spent by the rocket in air = 2 t = 2 x 3.57 = 7.14 second.

8 0
3 years ago
Other questions:
  • A typical mattress has a network of springs that provide support. If you sit on a mattress, the springs compress. A heavier pers
    8·1 answer
  • How are base units and derived units related?
    7·1 answer
  • ) So we are in a Universe with no center and no edge, but it is expanding... and it might be infinite. And it is all space and t
    14·1 answer
  • What is a dependent variable
    12·2 answers
  • If sound travels at 5600 m/s through a steel rod,what is the wavelength,given a wave frequency of 2480 Hz
    9·1 answer
  • A rock is pulled back in a slingshot as shown in the diagram below. The elastic on the slingshot is displaced 0.2 meters from it
    7·1 answer
  • 7. What is the kinetic energy of a 3-kilogram ball that is rolling at 2 meters per second?
    12·1 answer
  • A wave has a speed of 360 m/s. It has a frequency of 20hz what is its wavelength (include correct unit)
    10·2 answers
  • Photo used to help with the question is below!! Please answer! Will mark BRAINLIEST!
    10·1 answer
  • If you have a mass of 30 kilograms and you are resting on top of a hill that is 20 meters high how much energy would you have.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!