Answer:
The correct option is A
Explanation:
From the question we are told that
The mass number is 
Generally the mean radius is mathematically evaluated as

Here
is a constant with a value 
So



Volume by Displacement. The displacement method (submersion, or dunking method) can be used to accurately measure the volume of the human body and other oddly shaped objects by measuring the volume of fluid displaced when the object is submerged.
The following precautions should be taken very observantly:-
The line of sight must be perpendicular to measuring scale to avoid parallax error. Formation of bubbles inside the cylinder should be completely avoided. Any bubbles within leads to wrong measurements.
This problem is a piece o' cake, IF you know the formulas for both kinetic energy and momentum. So here they are:
Kinetic energy = (1/2) · (mass) · (speed²)
Momentum = (mass) · (speed)
So, now ... We know that
==> mass = 15 kg, and
==> kinetic energy = 30 Joules
Take those pieces of info and pluggum into the formula for kinetic energy:
Kinetic energy = (1/2) · (mass) · (speed²)
30 Joules = (1/2) · (15 kg) · (speed²)
60 Joules = (15 kg) · (speed²)
4 m²/s² = speed²
Speed = 2 m/s
THAT's all you need ! Now you can find momentum:
Momentum = (mass) · (speed)
Momentum = (15 kg) · (2 m/s)
<em>Momentum = 30 kg·m/s</em>
<em>(Notice that in this problem, although their units are different, the magnitude of the KE is equal to the magnitude of the momentum. When I saw this, I wondered whether that's always true. So I did a little more work, and I found out that it isn't ... it's a coincidence that's true for this problem and some others, but it's usually not true.)</em>
Answer:
Compression- pushing together
Refraction- pulling apart
Wavelength- the length of the wave
Explanation:
I just knew it
~Plz click the crown~
A=m/s^2(meter per second square)
Work=joule