Answer:
- The formula its

- After 5 years, the computer value its $ 1056
Explanation:
<h3>
Obtaining the formula</h3>
We wish to find a formula that
- Starts at 2816.

- Reach 0 at 8 years.

- Depreciates at a constant rate. m
We can cover all this requisites with a straight-line equation. (an straigh-line its the only curve that has a constant rate of change) :
,
where m its the slope of the line and b give the place where the line intercepts the <em>y</em> axis.
So, we can use this formula with the data from our problem. For the first condition:


So, b = $ 2816.
Now, for the second condition:





So, our formula, finally, its:

<h3>After 5 years</h3>
Now, we just use <em>t = 5 years</em> in our formula



Answer:
The magnitude of the magnetic field is 1.83 x
T.
Explanation:
The flow of an electric current in a straight wire induces magnetic field around the wire. When current is flowing through two wires in the same direction, a force of attraction exists between the wires. But if the current flows in opposite directions, the force of repulsion is felt by the wires.
In the given question, the direction of flow of current through the wires is opposite, thus both wires applies the same field on each other. The result to repulsion between them.
The magnetic field (B) between the given wires can be determined by:
B = 
where: I is the current, r is the distance between the wires and
is the magnetic field constant.
But, I = 11 A, r = 0.12 m and
= 4
x
Tm/A
So that;
B = 
= 1.8333 x 
B = 1.83 x
T
The options of the given are:
A. A large diameter myelinated fiber
B. A small diameter myelinated fiber
C. A large unmyelinated fiber
D. A small unmyelinated fiber
E. A small fiber with multiple Schwann cells
Answer: Option A, A large diameter myelinated fiber.
Explanation:
The conduction of the nerve impulse would be greatest in the myelinated fiber because the main function of the myelin sheath is to increase the speed of the impulse at which the electrical signals propagate.
In case of the unmyelinated sheath the nerve impulse travels slowly as the conduction waves but in case of the large diameter myelinated sheath the signals travel via saltatory conduction( hop)
In this type of propagation the signals are transferred from the node of Ranvier in one neuron to next node which increases the overall velocity of the action potentials.
Work = Force * distance
W = Fd
Given F = 500 N, d = 10 m
W = (500)(10)
W = 5000 J
The work done is 500 Joules. The time of 4 s is irrelevant in this case.
Answer:
utilization / effects
Explanation:
Utilization equipment are those equipment that makes use of electric energy for the purpose of chemical, electronic, lighting, heating, electro-mechanical or other alike purposes. Hence utilization best suits the first question mark in the question. Secondly, there are associated effects when current flows through a conductor, not responses.