Answer:
a) m = 993 g
b) E = 6.50 × 10¹⁴ J
Explanation:
atomic mass of hydrogen = 1.00794
4 hydrogen atom will make a helium atom = 4 × 1.00794 = 4.03176
we know atomic mass of helium = 4.002602
difference in the atomic mass of helium = 4.03176-4.002602 = 0.029158
fraction of mass lost =
= 0.00723
loss of mass for 1000 g = 1000 × 0.00723 = 7.23
a) mass of helium produced = 1000-7.23 = 993 g (approx.)
b) energy released in the process
E = m c²
E = 0.00723 × (3× 10⁸)²
E = 6.50 × 10¹⁴ J
The two systems that work together to deliver oxygen are D, respiratory and cardiovascular
<span>c. atoms are always in motion..............</span>
For example science has discovered many amazing things like atoms,molecules which led to the development of nuclear reactors etc. Challenges would be like trying to prove theories like evolution for 100 of years trying to discover all the stuff we still don’t know exists all the mysteries of life. A lot of science is still theory we can’t prove some things until we have more advanced technology etc.
This problem is a piece o' cake, IF you know the formulas for both kinetic energy and momentum. So here they are:
Kinetic energy = (1/2) · (mass) · (speed²)
Momentum = (mass) · (speed)
So, now ... We know that
==> mass = 15 kg, and
==> kinetic energy = 30 Joules
Take those pieces of info and pluggum into the formula for kinetic energy:
Kinetic energy = (1/2) · (mass) · (speed²)
30 Joules = (1/2) · (15 kg) · (speed²)
60 Joules = (15 kg) · (speed²)
4 m²/s² = speed²
Speed = 2 m/s
THAT's all you need ! Now you can find momentum:
Momentum = (mass) · (speed)
Momentum = (15 kg) · (2 m/s)
<em>Momentum = 30 kg·m/s</em>
<em>(Notice that in this problem, although their units are different, the magnitude of the KE is equal to the magnitude of the momentum. When I saw this, I wondered whether that's always true. So I did a little more work, and I found out that it isn't ... it's a coincidence that's true for this problem and some others, but it's usually not true.)</em>