Answer:
c. 0.2 M HNO₃ and 0.4 M NaF
.
Explanation:
A buffer is defined as the mixture of a weak acid with its conjugate base or a weak base with its conjugate acid.
A weak acid or weak base are defined as an acid or base that partially dissociates in aqueous solution. in contrast, a strong acid or base are acids or bases that is dissociated completely in water.
Thus:
a. 0,2M HNO₃ and 0.4 M NaNO₃. This is a mixture of a strong acid with its conjugate base. <em>IS NOT </em>a buffer.
b. 0.2 M HNO₃ and 0.4 M HF
. This is a mixture of two strong acids. <em>IS NOT </em>a buffer.
c. 0.2 M HNO₃ and 0.4 M NaF
. NaF is the conjugate base of a weak acid as HF is.
The reaction of HNO₃ with NaF is:
HNO₃ + NaF → HF + NaNO₃
That means that in solution you will have a weak acid (HF) with its conjugate base (NaF). Thus, this mixture <em>IS </em>a buffer.
d. 0.2 M HNO₃ and 0.4 M NaOH. This is the mixture of a strong acid with a strong base, thus, this <em>IS NOT </em>a buffer.
I hope it helps!
Answer: devices are powered by moving water and are different from traditional hydropower turbines in that they are placed directly in a river, ocean or tidal current. They generate power only from the kinetic energy of moving water (current).
Explanation:
The answer is c.......................................
Answer:
Test for an odor. The nonpolar substance should have a higher volatility and stronger odor because of its London dispersion forces.
Explanation:
To help Ming identify the non-polar compound, assuming the non-polar compound will have an odor test for it and most importantly, the non-polar substance should have a higher volatility due to its London dispersion forces.
- London dispersion forces are weak attractions found between non-polar molecules and noble gases.
- They account for the reason why compounds as such are volatile