Answer:
One mole of oxygen atoms has a mass of 16 g, as 16 is the atomic weight of oxygen, and contains 6.02 X 10^23 atoms of oxygen.
Explanation:
Answer:
17.09g/L
Explanation:
Density = total mass of elements/ volume
We need to find the mass of each mixture constituents using their molar mass:
mole = mass/molar mass
For Neon (Ne) which contains 0.650mol;
0.650 = mass/20.18
mass = 0.650 × 20.18
mass = 13.12g
For Krypton (Kr) which contains 0.321mol;
0.321 = mass/83.79
mass = 0.321 × 83.79
mass = 26.89g
For Xenon (Xe) which contains 0.190mol;
0.190 = mass/131.3
mass = 0.190 × 131.3
mass = 24.95g
Total mass = 13.12g + 26.89g + 24.95g = 64.96g
Density = total mass / volume
Density = 64.96g / 3.80L
Density of the mixture = 17.09g/L
If the power is out long enough even the city folks will run out of water. Many homes are all electric, so as soon at the lights are out they have no heat, no hot water and they can't cook. ... If the power is out, gas stations can't pump gas. Once generators run out of gas, those people will be in the dark too.
Explanation:
what do you mean by "bad"
Answer:
It will exert the pressure at a temperature of <em><u>153.44 K</u></em>
Explanation:
To answer this question, we shall be using the ideal gas equation;
PV = nRT
Since we are calculating the temperature, it can be made the subject of the formula.
Thus, this can be T = PV/nR
where P is the pressure = 900 torr
V is the volume = 0.75 L
n is the number of moles = 0.0705 mol
R is the molar gas constant = 62.4 L.Torr.
.
Plugging these values into the equation, we have;
T = (900 × 0.75)/(0.0705 × 62.4)
T = 153.44 K