Answer:
4
Explanation:
Ionization energy can be defined as the energy required for an atom to lose its valence electron to form an ion. Hence, it deals with how easily an atom would lose its electron and form an ion. As the valence electrons are lossless bound to the outermost shell, they can easily be lost without much problem or better still they can be lost easily. Hence, the energy change here is small and thus we can conclude that the ionization energy here is low.
The electron affinity works quite differently from the ionization energy. It deals with the way in which a neutral atom attracts an electron to form an ion. For an electron with loose valence electrons, the sure fact is that it does not really need these electrons. Hence, there is no need for an high electron affinity on its part. Thus, we conclude that the electron affinity is also low
H₂SO₃ is weaker acid than H₂SO₄.
The bonding power of an acid is typically influenced by the size of the "SO₄" atom; the smaller the "SO₄" atom, the stronger the H-A bond. The atoms get larger and the bonds get weaker as you proceed down a row in the Periodic Table, strengthening the acids.
<h3>Describe acid.</h3>
The term "acid" refers to any molecule or ion that can donate a proton (a Brnsted-Lowry acid) or establish a covalent bond with an electron pair (a Lewis acid). The first class of acids is the proton donors, also known as Brnsted-Lowry acids.
Its chemical name is lysergic acid diethylamide, or LSD as it is more often known. Because it has a potent hallucinogenic impact, using it could alter how you see the world and its objects. The effects of LSD are referred to as tripping.
The term "acid" is frequently used to denote aqueous solutions of acids with a pH lower than 8, even though the technical meaning of the term only pertains to the solute.
To learn more about acid visit:
brainly.com/question/14072179
#SPJ4
Answer : The energy of the photon emitted is, -12.1 eV
Explanation :
First we have to calculate the
orbit of hydrogen atom.
Formula used :

where,
= energy of
orbit
n = number of orbit
Z = atomic number of hydrogen atom = 1
Energy of n = 1 in an hydrogen atom:

Energy of n = 2 in an hydrogen atom:

Energy change transition from n = 1 to n = 3 occurs.
Let energy change be E.

The negative sign indicates that energy of the photon emitted.
Thus, the energy of the photon emitted is, -12.1 eV
Answer:
A mixture is a physical combination of substances thus it only requires physical processes to separate.
Answer:
you need to use the 2 because I already did it
Explanation:
db