Answer:
x =2, x = 4
Step-by-step explanation:
x^2 - 6x + 8 = 0
(x - 2)(x - 4) = 0
x - 2 = 0; x = 2
x - 4 = 0; x = 4
Answer:
60 seconds, 7715 feet
Step-by-step explanation:
Plane A and B start out 615 feet apart, and we find this by subtracting the height of plane A from plane B, getting 5000-4385=615. Now we have to find how many more feet of altitude plane A is gaining per second over plane B.
To find this we subtract 45.25 from 55.5 and get 10.25 feet per second. Now to find out how many seconds until they'll be at the same altitude we simply divide 615 by 10.25, getting 60 seconds.
For the second part, to find the altitude at this point, we simply multiply the altitude gain of one of the planes per second by the time of 60 seconds to get how much altitude they gained over that time, and add it to the starting altitude. Doing this with plane B we get 45.25*60=2715, and we add that to 5000 to get the final answer of 7715.
The area of a parallelogram is base multiplied by height and therefore 18/2 and there you go.
Answer:
a) 0.125
b) 7
c) 0.875 hr
d) 1 hr
e) 0.875
Step-by-step explanation:l
Given:
Arrival rate, λ = 7
Service rate, μ = 8
a) probability that no requests for assistance are in the system (system is idle).
Let's first find p.
a) ρ = λ/μ

Probability that the system is idle =
1 - p
= 1 - 0.875
=0.125
probability that no requests for assistance are in the system is 0.125
b) average number of requests that will be waiting for service will be given as:
λ/(μ - λ)
= 7
(c) Average time in minutes before service
= λ/[μ(μ - λ)]
= 0.875 hour
(d) average time at the reference desk in minutes.
Average time in the system js given as: 1/(μ - λ)

= 1 hour
(e) Probability that a new arrival has to wait for service will be:
λ/μ =
= 0.875
Answer:
17/12
Step-by-step explanation:
i hope this is right