The answer is 267.93 g
Molar mass of CaBr2 is the sum of atomic masses of Ca and Br:
Mr(CaBr2) = Ar(Ca) + 2Ar(Br)
Ar(Ca) = 40 g/mol
Ar(Br) = 79.9 g/mol
Mr(CaBr2) = 40 + 2 * 79.9 = 199.8 g/mol
The percentage of Br in CaBr2 is:
2Ar(Br) / Mr(CaBr2) * 100 = 2 * 79.9 / 199.8 * 100 = 79.98%
Now make a proportion:
x g in 79.98%
335 g in 100%
x : 79.98% = 335 g : 100%
x = 79.98% * 335 g : 100%
x = 267.93 g
Answer:
2H2O2(aq)→ 2H2O(l) O2(g) : The oxidation number of oxygen for each compound is -1, -2, 0
Explanation:
In peroxides the oxidation state of oxygen is -1, since one oxygen bonds to the other oxygen and a hydrogen and the bound oxygen captures the electron of the remaining hydrogen. Through a scheme would be
H --- O --- O --- H
We remember that oxygen needs two electrons to get to have the configuration of the nearest noble gas (Lewis octet rule). In Peroxides, the oxygen is linked by covalent bonds. If we take it strictly, peroxide is a grouping of two oxygen, having the whole valence -2. which is why it is usually said that it is when oxygen has a valence -1
As we said the oxidation state is -2, the one that appears in the water molecule, since Hydrogen acts with valence +1 and it is 2 atoms that give up electrons to compensate for oxygen.
In the O2 it acts with valence 0 since we talk about gas in its elementary state. All diatomic molecules in their elemental state, generally gases or metals in solid state, act with a valence of 0.
Answer:
Volume = 35.2×220×6.0 = 46464 centimeters³
Explanation:
Nuclear decay or radioactive decay is a process by which the nucleus of an unstable atom loses energy that is in terms of its mass. The radioactivity may cause an atom to lose whichever of its subatomic particles.
The explanation as why some of the atoms go through nuclear decay while others do not its because of the stability of some atoms. Atoms usually tend to follow octet rule, those which do not follow through this may experience the nuclear decay.
NaCl and MgS, because they don't contain oxygen