In each mole of carbon dioxide there will be one mole of O₂.
Let us calculate the moles of carbon dioxide gas present first
The conditions are NTP it means , Temperature = 293 K and P = 1 atm
We will use ideal gas equation
PV= nRT
Where
P = Pressure of gas = 1 atm
V= 112mL=0.112L
R= gas constant =0.0821 L atm /mol K
n = moles = ?
Putting values

moles = 0.00466
Thus moles of carbon dioxide will be 0.00466
The moles of O₂ = 0.00466
Answer:
Mark me as Brainliest please
Explanation:
Compression vs Tension
Tension and compression are two concepts discussed in physics. Tension is a force, while compression is a phenomenon. Both these concepts play important parts in fields such as mechanical systems, automobile engineering, heat engines, material science, pendulums and various other fields. It is vital to have a proper understanding in tension and compression in order to excel in such fields. In this article, we are going to discuss what compression and tension are, their definitions, applications of compression and tension, the similarities between compression and tension and finally, the difference between compression and tension.
During Georgia’s severe drought in 2007, the Centennial Park was under redevelopment.
Answer:
These two are equivalent and valid:


Explanation:
The molecular superscripts for each atom in the <em>molecular formula</em> are determined by the number of times that the mass of the<em> empirical formula</em> is contained in the<em> molar mass</em>.
<u />
<u>1. Determine the mass of the empirical formula:</u>
:
Atomic masses:
- O: 15.999g/mol
- C: 12.011g/mol
- N: 14.007g/mol
- Cl: 35.453g/mol
Total mass:
- 15.999g/mol + 12.011g/mol + 14.007g/mol + 35.453g/mol = 77.470g/mol
<u />
<u>2. Divide the molar mass by the mass of the empirical formula:</u>
- 232.41g/mol / 77.470g/mol = 3
<u>3. Multiply each superscript of the empirical formula by the previous quotient: 3</u>

Or:

You might also write CN as a group:

I believe it’s physical property because there is no chemical reaction to an unlit match♀️