Answer:
5. Please Kemi, be careful not to place your feet on the lava flowing down from the mountain.
6. A Ore canbe defined as a natural solid material gotten from the earth, which a metal or valuable mineral can be extracted from.
7. Diamond.
8. Fracture
9. Molten Magma
10. Natural
11. In-organic
12. Solid
13. Crystal structures
14. Definite Chemical Composition
15. Metallic
16. Non-Metallic
17. Energy Minerals
Explanation:
For the answer to the question above asking, h<span>ow many moles of glucose (C6H12O6) are in 1.5 liters of a 4.5 M C6H12O6 solution?
The answer to your question is the the third one among the given choices which is 6.8 mol.
</span><span>moles glucose = 1.5 x 4.5 = 6.8 </span>
Answer:
hola soy jess, tu respuesta esta aqui
¿cuantos moles de CO2 se requiere para reaccionar 2 moles de Ba(OH)2
2 mol Ba(OH)₂ × \frac{1molCO_{2} }{1molBa (OH)_{2}}
1molBa(OH)
2
1molCO
2
= 2 moles CO₂
Explanation:
espero que pueda ayudarte
hermana/hermano
lo que
hahahaha
Answer:
See explanation below
Explanation:
In this case, let's see both molecules per separate:
In the case of SeO₂ the central atom would be the Se. The Se has oxidation states of 2+, and 4+. In this molecule it's working with the 4+, while oxygen is working with the 2- state. Now, how do we know that Se is working with that state?, simply, let's do an equation for it. We know that this molecule has a formal charge of 0, so:
Se = x
O = -2
x + (-2)*2 = 0
x - 4 = 0
x = +4.
Therefore, Selenium is working with +4 state, the only way to bond this molecule is with a covalent bond, and in the case of the oxygen will be with double bond. See picture below.
In the case of CO₂ happens something similar. Carbon is working with +4 state, so in order to stabilize the charges, it has to be bonded with double bonds with both oxygens. The picture below shows.