Look at your speedometer for say, a couple of seconds. Depends on whether or not you are moving on average at a constant speed (speedo won't change much) or whether you're in a polluting traffic jam/queue in which case the speedo will go up and down like a yo yo. to determine the speed, you'd probably need to plot the speed on the speedo against the times at which the speedo speeds were read from the speedo.
Answer:
Option C is correct.
Modulus of elasticity of the composite perpendicular to the fibers = (12 × 10⁶) psi
Explanation:
For combination of materials, the properties (especially physical properties) of the resulting composite is a sum of the fractional contribution of each material thay makes up the composite.
In this composite,
The fibres = 20 vol%
Aluminium = 80 vol%
Modulus of elasticity of the composite
= [0.2 × E(fibres)] + [0.8 × E(Al)]
Modulus of elasticity of the fibers = E(fibres) = (55 × 10⁶) psi. =
Modulus of elasticity of aluminum = E(Al) = (10 × 10⁶) psi.
But modulus of elasticity of the composite perpendicular to the fibers is given in the expression.
[1 ÷ E(perpendicular)]
= [0.2 ÷ E(fibres)] + [0.8 ÷ E(Al)]
[1 ÷ E(perpendicular)]
= [0.2 ÷ (55 × 10⁶)] + [0.8 ÷ (10 × 10⁶)]
= (3.636 × 10⁻⁹) + (8.00 × 10⁻⁸)
= (8.3636 × 10⁻⁸)
E(perpendicular) = 1 ÷ (8.3636 × 10⁻⁸)
= 11,961,722.5 psi = (11.96 × 10⁶) psi
= (12 × 10⁶) psi
Hope this Helps!!!
It would be A. Because think of the explanations Jasons friend could say to them that would be a negative 'statement'.
Picosecond = 10 ^ -12 seconds.
Zeptosecond = 10^ -18 seconsds
Petaseonds = 10^15 seconds
To express Picoseconds into any of other two, you have to divide 10^-12 by the power index of the one in question
1Picosecond : 10^-12 / 10^-18 = 10^ (-12- 18) = 10^ (-12+18)= 10^6 zeptoseconds
1Picosecond : 10^-12 / 10^15 = 10^ (-12-15) = 10^-27 Petaseconds.
1Picosecond = 10^6 zeptoseconds
1Picosecond = 10^-27 Petaseconds
Answer:
Explanation:
We are given that a parallel- plate capacitor is charged to a potential difference V and then disconnected from the voltage source.
1 m =100 cm
Surface area =S=
We have to find the charge Q on the positive plates of the capacitor.
V=Initial voltage between plates
d=Initial distance between plates
Initial Capacitance of capacitor
Capacitance of capacitor after moving plates
Potential difference between plates after moving
Hence, the charge on positive plate of capacitor=