1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wel
3 years ago
12

An elevator and its load have a combined mass of 1650 kg. Find the tension in the supporting cable when the elevator, originally

moving downward at 11 m/s, is brought to rest with constant acceleration in a distance of 41 m.

Physics
1 answer:
gizmo_the_mogwai [7]3 years ago
6 0

Answer:

Tension in the supporting cable is = 4,866 N ≅4.9 KN

Explanation:

First of all, we need to understand that tension is a force, so the motion law

F = Ma applies perfectly.

From Newtons third law of motion, action and reaction are equal and opposite. This means that the force experienced by the elevator, is equal to the tension experienced by the spring.

Parameters given:

Mass of load = 1650 kg

Acceleration of load = ?

The acceleration of the load can be obtained by diving the change in velocity by the time taken. But we need to know the time taken for the motion to 41 m.

Time taken = distance covered / velocity

= \frac{41m}{11m/s} = 3.73 seconds

∴Acceleration = ( initial velocity - final velocity )/ time taken

Note: Final velocity is = 0 since the body came to a rest.

Acceleration = \frac{11 - 0 m/s}{3.73s} = 2.95m/s^{2}

Force acting on the cable = mass of elevator × acceleration of elevator

= 1650 × 2.95 = 4869.5 kg ≅ 4.9 KN

You might be interested in
A) A 12 kg object has a velocity of 37.5 m/s. What is its momentum?
Mkey [24]

Answer:

The answer would be 450 m kg/s

Explanation/ Explanation / Example:

Provided an object traveled 500 meters in 3 minutes , to calculate the average velocity you should take the following steps: Change minutes into seconds (so that the final result would be in meters per second). 3 minutes = 3 * 60 = 180 seconds , Divide the distance by time: velocity = 500 / 180 = 2.77 m/s .

If this doesn't help let me know!

4 0
3 years ago
¿Existe relación entre la rapidez para realizar trabajo y la velocidad del cuerpo?
katrin2010 [14]

Answer:

shark puppet yeah i be getting buckets

Explanation:

3 0
4 years ago
HELP FAST MARKING BRAINLEST A neutral electroscope is touched with a positively charged rod. After the rod is removed the electr
ELEN [110]

on touching electroscope gets positively charged, so answer is B. conduction

5 0
3 years ago
According to Newton’s law of universal gravitation, which statements are true?
andreyandreev [35.5K]

Before we solve this, we should know this fact:

According to Newton's Law of Gravitation, the force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. The force acts along the line joining the centres of the two objects. It can be shown by this:

F ∝ \frac{Mm}{ {d}^{2} }

Now, let us check all the options.

A. As we move to higher altitudes, the force of gravity on us decreases.

<em>This </em><em>statement </em><em>is </em><em>true.</em>

The force of gravity is inversely proportional to the square of distance from the centre of the earth. If, we go up the surface of the earth, the distance from the centre of the earth increases and hence the value of force of gravity decrease. So, force of gravity decreases with altitude.

B. As we move to higher altitudes, the force of gravity on us increases.

<em>This </em><em>statement</em><em> </em><em>is </em><em>false.</em>

We have already got the result in option A. that the force of gravity decreases with altitude. It never increases with altitude.

C. As we gain mass, the force of gravity on us decreases.

<em>This </em><em>statement</em><em> </em><em>is </em><em>false.</em>

The force of gravity is directly proportional to the product of the masses. So, if increase our mass, then the force of gravity will also increase and if we decrease our mass, then the force of gravity decreases.

D. As we gain mass, the force of gravity on us increases.

<em>This </em><em>statement</em><em> is</em><em> </em><em>true.</em>

As mentioned earlier in option C., the force of gravity is directly proportional to the product of the masses of the earth and another object. So, as we gain mass, the force of gravity on us increases.

E. As we move faster, the force of gravity on us increases.

<em>This </em><em>statement</em><em> is</em><em> </em><em>true</em><em>.</em>

Here, we have to consider a different formula. According to Newton's Second Law,

F = ma, where F is the force, m is the mass and a is the acceleration.

In other words,

F ∝ a, i.e., force is directly proportional to acceleration.

We know, acceleration is the rate of change of velocity of an body within a time period.

So, if speed is increased, then acceleration will also be greater, which results in the increase of force. So, as we move faster, the force of gravity on us increases.

<u>Answers:</u>

A: As we move to higher altitudes, the force of gravity on us decreases.

D: As we gain mass, the force of gravity on us increases.

E: As we move faster, the force of gravity on us increases.

Hope you could understand.

If you have any query, feel free to ask.

7 0
2 years ago
Imagine holding a basketball in both hands, throwing it straight up as high as you can, and then catching it when it falls. At w
Alisiya [41]

Answer:

C. At the instant the ball reaches its highest point.

Explanation:

When a body is thrown up, it tends to come down due to the influence of gravitational force acting on the body. The body will be momentarily at rest at its maximum point before falling. At this maximum point, the velocity of the body is zero and since force acting on a body is product of the mass and its acceleration, the force acting on the body at that point will be "zero"

Remember, F = ma = m(v/t)

Since v = 0 at maximum height

F = m(0/t)

F = 0N

This shows that the force acting on the body is zero at the maximum height.

4 0
3 years ago
Other questions:
  • Which example best describes a restoring force?
    7·1 answer
  • An airplane with a speed of 92.3 m/s is climbing upward at an angle of 51.1 ° with respect to the horizontal. When the plane's a
    7·1 answer
  • How much work is done by a crane that lowers 1000N of material a distance of 150
    11·2 answers
  • Hank eats many fatty foods. he doesn't exercise or wear sunscreen. hank is at risk for developing _____
    7·1 answer
  • What is the velocity of a car that travels 556km northwest in 3.2 hours
    9·1 answer
  • What is the Real anti virus software?
    15·2 answers
  • Tips to get friends?
    10·1 answer
  • I NEEEEEEEEEEEEEEEEDDDDDDDDDDDDDD HELLLPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP RE
    10·1 answer
  • State the career function of chemical engineering​
    15·2 answers
  • A car of mass 1200Kilograms moving at 15 m/s the driver applies the brakes for 0.08 seconds and the castles down to 10 meter per
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!