1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
10

What is the mass number of this atom? A.3 B.4 C.7 D.10

Physics
2 answers:
vaieri [72.5K]3 years ago
8 0
C. 7
The mass number of this atom is the number of protons and the number of neutrons combined, which in this case would be 3+4 or 7.

Hope this helps. 
Inessa [10]3 years ago
4 0
<span>What is the mass number of this atom?
</span>
<span>C.7</span>
You might be interested in
a solid metal sphere of radius 3.00m carries a total charge of -5.50. what is the magnitude of the electric field at a distance
aivan3 [116]

Answer:

(a) Electric field at 0.250 m is zero.

(b)  Electric field at 2.90 m is zero.

(c) Electric field at 3.10 m is - 5.15 x 10³ V/m.

(d) Electric field at 8.00 m is - 0.77 x 10³ V/m.

Explanation:

Let Q and R are the charge and radius of the solid metal sphere. The solid metal sphere behave as conductor, so total charge Q is on the surface of the sphere.

Electric field inside and outside the metal sphere is :

E = 0 for r ≤ R ( inside )

  = \frac{KQ}{r^{2} } for r > R ( outside )

Here K is electric constant and r is the distance from the center of the metal sphere.

(a) Electric field at 0.250 m is zero as r < R i.e. 0.250 m < 3 m from the above equation.

(b)  Electric field at 2.90 m is zero as r < R i.e. 2.90 m < 3 m from the above equation.

(c) Electric field at 3.10 m is given by the relation as r > R :

E = \frac{KQ}{r^{2} }

Substitute 9 x 10⁹ N m²/C² for K, -5.50 μC for Q and 3.10 m for r in the above equation.

E = - \frac{9\times10^{9}\times5.50\times10^{-6}  }{3.10^{2} }

E = - 5.15 x 10³ V/m

(d) Electric field at 8.00 m is given by the relation as r > R :

E = \frac{KQ}{r^{2} }

Substitute 9 x 10⁹ N m²/C² for K, -5.50 μC for Q and 8.00 m for r in the above equation.

E = - \frac{9\times10^{9}\times5.50\times10^{-6}  }{8^{2} }

E = - 0.77 x 10³ V/m

8 0
3 years ago
How might you tell if a food contains an acid
MrRissso [65]

Answer:

it will taste sour

Explanation:

7 0
3 years ago
Why are you able to observe the Doppler effect on earth with sound waves but not with light waves?
VladimirAG [237]

Answer: When an ambulance passes with its siren blaring, you hear the pitch of the siren change: as it approaches, the siren’s pitch sounds higher than when it is moving away from you. This change is a common physical demonstration of the Doppler effect.

Explanation:

6 0
3 years ago
I WILL MARK YOU THE BRAINLIEST NO LINKS
alexandr402 [8]
The strength of the force of friction depends on two factors; the type of surfaces involves and the force that the surfaces are being push together
3 0
3 years ago
A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
olga2289 [7]

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

3 0
3 years ago
Other questions:
  • What is gene-environment interactions?
    10·1 answer
  • An 85 kg dog is sitting on a couch what is the weight of the dog
    14·2 answers
  • What is the least possible initial kinetic energy kmin the oxygen atom could have and still excite the cesium atom?
    9·1 answer
  • An object has 16N of force being applied to the right, 16N of force being applied to the left, and 4N of force being applied dow
    14·1 answer
  • Once a scientist has made a hypothesis, what would they typically do next? (2 points)
    8·1 answer
  • Would the headlights of a car produce a two source interference pattern? If so how will it be observed?
    11·1 answer
  • An archer uses a bow to fire two similar arrows with the same string force. One
    7·1 answer
  • Can someone help me here. If the speed of an object does NOT change, the object is traveling at __________ speed.
    7·2 answers
  • Which of the following statements about electromagnetic radiation it true? A.electromagnetic waves with long wavelength are more
    10·1 answer
  • S When two unknown resistors are connected in series with a battery, the battery delivers total power Ps and carries a total cur
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!