Answer:
The work done on the canister by the 5.0 N force during this time is
54.06 Joules.
Explanation:
Let the initial kinetic energy of the canister be
KE₁ =
=
= 19.44 J in the x direction
Let the the final kinetic energy of the canister be
KE₂ =
=
= 73.5 J in the y direction
Therefore from the Newton's first law of motion, the effect of the force is the change of momentum and the difference in energy between the initial and the final
= 73.5 J - 19.44 J = 54.06 J
We will measure all angles from West, the negative x-axis and divide the journey into 3 parts:
P1 = 370y
P2 = 410cos(45)x + 410sin(45)y = 290x + 290y
P3 = 370cos(270 - 28)x + 370sin(270 - 28) = -174x - 327y
Overall displacement:
x = 290 - 174 = 116 m
y = 370 + 290 - 327 = 333 m
displacement = √(116² + 333²)
= 353 m
Direction:
tan(∅) = y/x
∅ = tan⁻¹ (333 / 116)
∅ = 70.8° from West.
Answer:
64 J
Explanation:
The potential energy change of the spring ∆U = -W where W = work done by force, F.
Now W = ∫F.dx
So, ∆U = - ∫F.dx = - ∫Fdxcos180 (since the spring force and extension are in opposite directions)
∆U = - ∫-Fdx
= ∫F.dx
Since F = 40x - 6x² and x moves from x = 0 to x = 2 m, we integrate thus, ∆U = ∫₀²F.dx
= ∫₀²(40x - 6x²).dx
= ∫₀²(40xdx - 6x²dx)
= ∫₀²(40x²/2 - 6x³/3)
= ∫₀²(20x² - 2x³)
= [20x² - 2x³]₀²
= [(20(2)² - 2(2)³) - (20(0)² - 2(0)³)
= [(20(4) - 2(8)) - (0 - 0))
= [80 - 16 - 0]
= 64 J
They have a negative charge and rotate around the nucleus
t = 0.527 s
<u>It accelerates for 0.527 s.</u>
<u>Explanation:</u>
We use the formula:
v = u+at
Given:
v = 106 m/s
u = 0 (since no gravity)

So applying the formula,
v = u+at
106 = 0 + 201t
t = 106/201
t = 0.527 s