The answer to this would inFact be A
Given: Mass of earth Me = 5.98 x 10²⁴ Kg
Radius of earth r = 6.37 x 10⁶ m
G = 6.67 x 10⁻¹¹ N.m²/Kg²
Required: Smallest possible period T = ?
Formula: F = ma; F = GMeMsat/r² Centripetal acceleration ac = V²/r
but V = 2πr/T
equate T from all equation.
F = ma
GMeMsat/r² = Msat4π²/rT²
GMe = 4π²r³/T²
T² = 4π²r³/GMe
T² = 39.48(6.37 x 10⁶ m)³/6.67 x 10⁻¹¹ N.m²/Kg²)(5.98 x 10²⁴ Kg)
T² = 1.02 x 10²² m³/3.99 x 10¹⁴ m³/s²
T² = 25,563,909.77 s²
T = 5,056.08 seconds or around 1.4 Hour
Answer: a) Mr = 2.4×10^-4kg/s
V = 34.42m/a
b) E = 173J
Ø = 2693.1J
c) Er = 0.64J/s
Explanation: Please find the attached file for the solution
Answer: Due that we don't know the initial speed after hitting the ball, we are going to accept that the ball goes up for half of the time and then falls during other half part, that is 3.0 seconds each. Then we know that ball's movement is ruled by the acceleration of gravity formula, as follows: H = Vi * T + 1/2 * g * T^2 V = Vi + g * T where: H is height, Vi initial speed, g gravity acceleration and T time When we only consider the second half of the trajectory, we have that initial speed at the top of that movement is zero, because ball goes up till top, where stops and starts to go down, so : H = 0 * 3 + 1/2 * 32 * 3^2 = 144 ft. So the height of the pop-up is 144 feet.
Answer: To determine acceleration ,Micah also needs the Time of the total trip in seconds.
Explanation:
Acceleration can be defined as rate of change of velocity.

for calculating acceleration, initial and final velocity are required in meter per second and the total time of the trip in seconds. Then acceleration is measured in meter per second square.
Thus, Micah knows that a car had a change in velocity of 15 m/s.To determine acceleration ,Micah also needs the <u>Time</u> of the total trip in seconds.