They both are waves but one goes faster then the other.
Answer:
162.78 m/s is the most probable speed of a helium atom.
Explanation:
The most probable speed:

= Boltzmann’s constant =
T = temperature of the gas
m = mass of the gas particle.
Given, m = 
T = 6.4 K
Substituting all the given values :


162.78 m/s is the most probable speed of a helium atom.
Sounds like the shingle/ball is thrown from the roof horizontally, so that the distance it travels <em>x</em> after time <em>t</em> horizontally is
<em>x</em> = (7.2 m/s) <em>t</em>
The object's height <em>y</em> at time <em>t</em> is
<em>y</em> = 9.4 m - 1/2 <em>gt</em>²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, and its vertical velocity is
<em>v</em> = -<em>gt</em>
(a) The object hits the ground when <em>y</em> = 0:
0 = 9.4 m - 1/2 <em>gt</em>²
<em>t</em>² = 2 * (9.4 m) / (9.80 m/s²)
<em>t</em> ≈ 1.92 s
at which time the object's vertical velocity is
<em>v</em> = -<em>g</em> (1.92 s) = -18.8 m/s ≈ -19 m/s
(b) See part (a); it takes the object about 1.9 s to reach the ground.
(c) The object travels a horizontal distance of
<em>x</em> = (7.2 m/s) * (1.92 s) ≈ 13.8 m ≈ 14 m
Answer:

Explanation:
given,
mass of wheel(M) = 3 Kg
radius(r) = 35 cm
revolution (ω_i)= 800 rev/s
mass (m)= 1.1 Kg
I_{wheel} = Mr²
when mass attached at the edge
I' = Mr² + mr²
using conservation of angular momentum





