Answer:

Step-by-step explanation:
When working with surds we need to take note of the roots present there.
To expand this equation we can do it the following way noting that √3 X √3 = 3
<em></em>
<em>Expanding (1-√3)(⅓+√3)</em>
1 X 1/3 = 1/3
1 X √3 = √3
-√3 X 1/3 =-√3/3
√3 X √3 = 3
hence, expanding the equation, we have
1/3 + √3 -√3/3 + 3
We can simply group the like terms and add them up.
[1/3 +3] +[√3-√3/3]
10/3 + 
= 
3x - 2y = 1
2x + 2y = 4
Add the second equation to the first
5x = 5
2x + 2y = 4
Divide the first equation by 5
x = 1
2x + 2y = 4
Subtract the first equation from the second
x = 1
x + 2y = 3
Subtract the first equation from the second again
x = 1
2y = 2
Divide the second equation by 2
x = 1
y = 1
<h3>
So, the solution is x = 1 and y = 1 {or: (1, 1)} </h3>
Answer:
x = -6
-18+4y=0 => 4y=18 =>y=18/4=9/2
Y=5
3x+20=0 => x=3x= -20=> x= -20/3
Step-by-step explanation:
Answer:
I'm taking an educated guess here and saying that its option two.
I haven't done these problems in almost two years.