The correct answer is "B. Make a Hypothesis".
I think the correct answer is decrease in temperature
I feel like that’s the right one
<span>Average oxidation state = VO1.19
Oxygen is-2. Then 1.19 (-2) = -2.38
Average oxidation state of V is +2.38
Consider 100 formula units of VO1.19
There would be 119 Oxide ions = Each oxide is -2. Total charge = -2(119) = -238
The total charge of all the vanadium ions would be +238.
Let x = number of of V+2
Then 100 – x = number of V+3
X(+2) + 100-x(+3) = +238
2x + 300 – 3x = 238
-x = 238-300 = -62
x = 62
Thus 62/100 are V+2
62/100 * 100 = 62%
</span>62 % is the percentage of the vanadium atoms are in the lower oxidation state. Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
You have to be very careful with this question. A change in mass can also occur in chemical changes especially if you have too much of something. For example
CH4 + 1.5 02 ===> CO2 + H2O
If you have too much of either CH4 or O2, there will be some CH4 or O2 left over. There has been a change in mass that you have too much of.
However that is not the point of the question. It is just something you need to be aware of.
Suppose you have a piece of aluminum and you take a course grinder after it. You will change the texture of the side you took the grinder to. If the aluminum has been anodized (a color has been put on it's surface), you may grind the color off or if it is just plain aluminum, you may roughen the surface, but you won't change what the aluminum will do chemically.
You may need only a small portion of the aluminum and you grind off just what you need. That will change the mass of both what you took off and the piece that you want, but the aluminum will still do whatever chemical property you need to use.
So you can change both texture and mass without changing the chemical properties of the substance whose mass or texture you are changing.
Answer:
4.867 L of ammonia
Explanation:
Using Haber's process to form ammonia using Nitrogen and hydrogen, the equation is :
N₂ + 3H₂ → 2NH₃
Here, 3 moles of hydrogen gas gives 2 moles of ammonia.
1 mole of any substance occupies 22.4L at STP
So, 3 x 22.4L of hydrogen gives 2 x 22.4 L of ammonia
Then 7.3 L of hydrogen will give:
=
=
= 4.867 L of ammonia