Answer:
The criteria listed in order of importance are;
1) To be inflated in the event of a collision in order to protect the occupants of the front of the vehicle
2) To be able to withstand the load of the breaking force of the occupants in the front seat of the vehicle during a collision
3) To be relatively tough so as to resist being torn on impact with a sharp object
The constraints listed in order of importance are;
1) How is the model design able to sense a collision that requires the airbag to be inflated
2) The uncertainty of the load the airbag will withstand upon collision
3) The possible hazard that could be caused by the gas used to inflate the airbag
4) The usage/interaction tendency between the vehicle occupant and the airbag system
Explanation:
In order to produce an effective design, it is important to be able to foresee the possible deficiencies of an idea so as to be able to mitigate the problems before an actual incident happens.
<u>Answer:</u> The mass of chlorine needed by the plant per day is 
<u>Explanation:</u>
We are given:
Volume o water treated per day = 25,000,000 gallons
Converting this volume from gallons to liters, we use the conversion factor:
1 gallon = 3.785 L
So, 
Amount of chlorine applied for disinfection = 10 mg/L
Applying unitary method:
For 1 L of water, the amount of chlorine applied is 10 mg
So, for
of water, the amount of chlorine applied will be 
Hence, the mass of chlorine needed by the plant per day is 
The correct answer is option 1. Carbon dioxide is nonpolar because the shape of the molecule is symmetrical. It is a linear molecule where the oxygen atoms are symmetrical on each end. CO2 molecule do not have a region of unequal sharing.
Solving part-1 only
#1
KMnO_4
- Transition metal is Manganese (Mn)
#2
Actually it's the oxidation number of Mn
Let's find how?




- x is the oxidation number
#3
- Purple as per the color of potassium permanganate
#4

<span>In normal conditions gas particles remain very distant from each other. They rarely collide and are stable. When temperature increases the gas particles begin to move faster and collide more, reducing the distance. When pressure increases the gas particles also pick up kinetic speed and are also closer to each other.</span>