1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Genrish500 [490]
3 years ago
9

exFormula1" title=" \int\limits {3 ^{ \frac{x}{2} } } \, dx " alt=" \int\limits {3 ^{ \frac{x}{2} } } \, dx " align="absmiddle" class="latex-formula">=
Mathematics
2 answers:
Kryger [21]3 years ago
7 0
\int 3^{\tfrac{x}{2}}\, dx=(*)\\
t=\dfrac{x}{2}\\
dt=\dfrac{x}{2}\, dx\\
dx=2\, dt\\
(*)=\int 3^t\cdot2\, dt=\\
2\int 3^t \, dt=\\
2\cdot\dfrac{3^t}{\ln 3}+C=\\
\boxed{\dfrac{2\cdot3^{\tfrac{x}{2}}}{\ln 3}+C}

jekas [21]3 years ago
7 0
\int { { 3 }^{ \frac { x }{ 2 }  } } dx\\ \\ =\int { { \left( { 3 }^{ x } \right)  }^{ \frac { 1 }{ 2 }  } } dx

However:

u={ 3 }^{ x }\\ \\ \therefore \quad \frac { du }{ dx } ={ 3 }^{ x }\cdot \ln { 3 } \\ \\ \therefore \quad du={ 3 }^{ x }\cdot \ln { 3 } dx\\ \\ \therefore \quad dx=\frac { 1 }{ { 3 }^{ x }\cdot \ln { 3 }  } du=\frac { 1 }{ u\cdot \ln { 3 }  } du

So let's use:

\int { { u }^{ \frac { 1 }{ 2 }  } } \cdot \frac { 1 }{ u\cdot \ln { 3 }  } du\\ \\ =\int { \frac { 1 }{ \ln { 3 }  }  } \cdot { u }^{ -\frac { 1 }{ 2 }  }du

But you need to know that:

\int { k{ u }^{ n } } du\\ \\ =\frac { k{ u }^{ n+1 } }{ n+1 } +C

Therefore:

\int { \frac { 1 }{ \ln { 3 }  }  } \cdot { u }^{ -\frac { 1 }{ 2 }  }du\\ \\ =\frac { \frac { 1 }{ \ln { 3 }  } \cdot { u }^{ \frac { 1 }{ 2 }  } }{ \frac { 1 }{ 2 }  } +C

\\ \\ =\frac { 1 }{ \ln { 3 }  } \cdot { u }^{ \frac { 1 }{ 2 }  }\cdot 2+C\\ \\ =\frac { 1 }{ \ln { 3 }  } \cdot { 3 }^{ \frac { x }{ 2 }  }\cdot 2+C\\ \\ =\frac { 2\cdot { 3 }^{ \frac { x }{ 2 }  } }{ \ln { 3 }  } +C
You might be interested in
A particle moves on the hyperbola xy=18 for time t≥0 seconds. At a certain instant, y=6 and dydt=8. What is x that this instant?
professor190 [17]

Answer:

The value of x at this instant is 3.

Step-by-step explanation:

Let x\cdot y = 18, we get an additional equation by implicit differentiation:

x\cdot \frac{dy}{dt}+y\cdot \frac{dx}{dt} = 0 (1)

From the first equation we find that:

x = \frac{18}{y} (2)

By applying (2) in (1), we get the resulting expression:

\frac{18}{y}\cdot \frac{dy}{dt}+y\cdot \frac{dx}{dt} = 0 (3)

y\cdot \frac{dx}{dt}=-\frac{18}{y}\cdot \frac{dy}{dt}

\frac{dx}{dt} = -\frac{18}{y^{2}} \cdot \frac{dy}{dt}

If we know that y = 6 and \frac{dy}{dt} = 8, then the first derivative of x in time is:

\frac{dx}{dt} = -\frac{18}{6^{2}} \cdot (8)

\frac{dx}{dt} = -4

From (1) we determine the value of x at this instant:

x\cdot \frac{dy}{dt} = -y\cdot \frac{dx}{dt}

x = -y\cdot \left(\frac{\frac{dx}{dt} }{\frac{dy}{dt} } \right)

x = -6\cdot \left(\frac{-4}{8} \right)

x = 3

The value of x at this instant is 3.

4 0
3 years ago
What is the length (magnitude) of the vector (7, -2)?
Sedbober [7]

Answer: B

Step-by-step explanation:

I just got it right on A P E X

have a good day

4 0
3 years ago
Read 2 more answers
According to the National Beer Wholesalers Association, U.S. consumers years and older consumed gallons of beer and cider per pe
12345 [234]

Complete question :

According to the National Beer Wholesalers Association, U.S. consumers 21 years and older consumed 26.9 gallons of beer and cider per person during 2017. A distributor in Milwaukee believes that beer and cider consumption are higher in that city. A sample of consumers 21 years and older in Milwaukee will be taken, and the sample mean 2017 beer and cider consumption will be used to test the following null and alternative hypotheses:

H, :μ< 26.9

Ha : μ> 26.9

a. Assume the sample data led to rejection of the null hypothesis. What would be your conclusion about consumption of beer and cider in Milwaukee?

b. What is the Type I error in this situation? What are the consequences of making this error?

c. What is the Type II error in this situation? What are the consequences of making this error?

Answer:

Kindly check explanation

Step-by-step explanation:

Given the null and alternative hypothesis :

H0 :μ< 26.9

Ha : μ> 26.9

Assume the Null hypothesis is rejected ;

We conclude that there is significant evidence that the mean consumption of beer and cider is higher in the city (more than 26.9 gallons).

B.) Type 1 error is committed when the Null hypothesis is incorrectly rejected.

C.) Type 2 error is committed when we fail to reject a false null hypothesis. In this scenario, we fail to conclude that the average consumption of beer and cider is more than 26.9 gallons per person.

5 0
3 years ago
The label on the cars antifreeze container claims to protect the car between -30C and 130C. To convert Celsius temperature to Fa
RideAnS [48]
C = 5/9(F - 32)

C = -30
-30 = 5/9(F - 32)
-30 = 5/9F - 160/9
-30 + 160/9 = 5/9F
-270/9 + 160/9 = 5/9F
-110/9 = 5/9F
-110/9 * 9/5 = F
- 990/45 = F
- 22 = F

C = 5/9(F - 32)
C = 130

130 = 5/9F  - 160/9
130 + 160/9 = 5/9F
1170/9 + 160/9 = 5/9F
1330/9 = 5/9F
1330/9 * 9/5 = F
11970/45 = F
266 = F

So in Fahrenheit temp, the the car is protected between -22 F and 266 F

4 0
3 years ago
Read 2 more answers
Use logarithmic differentiation to find the derivative of the function. y = sqrt(x)e^x^2(x^2 + 5)^12
padilas [110]

y=\sqrt x\,e^{x^2}(x^2+5)^{12}=x^{1/2}e^{x^2}(x^2+5)^{1/2}

Take the logarithm of both sides and expand the right hand side:

\ln y=\ln\left(x^{1/2}e^{x^2}(x^2+5)^{1/2}\right)

\ln y=\ln x^{1/2}+\ln e^{x^2}+\ln(x^2+5)^{12}

\ln y=\dfrac12\ln x+x^2\ln e+12\ln(x^2+5)

\ln y=\dfrac12\ln x+x^2+12\ln(x^2+5)

Now take the derivative of both sides with respect to x:

\dfrac1y\dfrac{\mathrm dy}{\mathrm dx}=\dfrac1{2x}+2x+\dfrac{24x}{x^2+5}

\dfrac{\mathrm dy}{\mathrm dx}=\left(\dfrac1{2x}+2x+\dfrac{24x}{x^2+5}\right)y

\dfrac{\mathrm dy}{\mathrm dx}=\left(\dfrac1{2x}+2x+\dfrac{24x}{x^2+5}\right)\sqrt x\,e^{x^2}(x^2+5)^{12}

I'd stop there, but you could condense the right side a bit to get

\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{4x^4+21x^2+48x+5}{2x(x^2+5)}\sqrt x\,e^{x^2}(x^2+5)^{12}

\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{4x^4+21x^2+48x+5}{2\sqrt x}e^{x^2}(x^2+5)^{11}

8 0
4 years ago
Other questions:
  • Which statement is NOT true about the slope of a straight-line graph?
    15·2 answers
  • Subtract:<br><br> -4+ (-12) - 15
    7·1 answer
  • Round 6.3346 to the nearest thousandth
    14·2 answers
  • Geometric Mean <br><br>Solve for X
    12·1 answer
  • Anybody like slope?<br> PLS HELPPPPP!
    13·2 answers
  • Please I need to answer this for my finals quiz
    15·1 answer
  • –6(2 + a) = –48 please answer
    15·2 answers
  • HELP ILL GIVE 10 POINTS <br><br>(LOOK AT SCREENSHOT BELOW)
    11·1 answer
  • What is the solution to the following system?<br> (3x+2y+z = 20<br> X-4y-Z=-10<br> 2x+y + 2z = 15
    15·1 answer
  • Answers with steps please
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!