1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Genrish500 [490]
3 years ago
9

exFormula1" title=" \int\limits {3 ^{ \frac{x}{2} } } \, dx " alt=" \int\limits {3 ^{ \frac{x}{2} } } \, dx " align="absmiddle" class="latex-formula">=
Mathematics
2 answers:
Kryger [21]3 years ago
7 0
\int 3^{\tfrac{x}{2}}\, dx=(*)\\
t=\dfrac{x}{2}\\
dt=\dfrac{x}{2}\, dx\\
dx=2\, dt\\
(*)=\int 3^t\cdot2\, dt=\\
2\int 3^t \, dt=\\
2\cdot\dfrac{3^t}{\ln 3}+C=\\
\boxed{\dfrac{2\cdot3^{\tfrac{x}{2}}}{\ln 3}+C}

jekas [21]3 years ago
7 0
\int { { 3 }^{ \frac { x }{ 2 }  } } dx\\ \\ =\int { { \left( { 3 }^{ x } \right)  }^{ \frac { 1 }{ 2 }  } } dx

However:

u={ 3 }^{ x }\\ \\ \therefore \quad \frac { du }{ dx } ={ 3 }^{ x }\cdot \ln { 3 } \\ \\ \therefore \quad du={ 3 }^{ x }\cdot \ln { 3 } dx\\ \\ \therefore \quad dx=\frac { 1 }{ { 3 }^{ x }\cdot \ln { 3 }  } du=\frac { 1 }{ u\cdot \ln { 3 }  } du

So let's use:

\int { { u }^{ \frac { 1 }{ 2 }  } } \cdot \frac { 1 }{ u\cdot \ln { 3 }  } du\\ \\ =\int { \frac { 1 }{ \ln { 3 }  }  } \cdot { u }^{ -\frac { 1 }{ 2 }  }du

But you need to know that:

\int { k{ u }^{ n } } du\\ \\ =\frac { k{ u }^{ n+1 } }{ n+1 } +C

Therefore:

\int { \frac { 1 }{ \ln { 3 }  }  } \cdot { u }^{ -\frac { 1 }{ 2 }  }du\\ \\ =\frac { \frac { 1 }{ \ln { 3 }  } \cdot { u }^{ \frac { 1 }{ 2 }  } }{ \frac { 1 }{ 2 }  } +C

\\ \\ =\frac { 1 }{ \ln { 3 }  } \cdot { u }^{ \frac { 1 }{ 2 }  }\cdot 2+C\\ \\ =\frac { 1 }{ \ln { 3 }  } \cdot { 3 }^{ \frac { x }{ 2 }  }\cdot 2+C\\ \\ =\frac { 2\cdot { 3 }^{ \frac { x }{ 2 }  } }{ \ln { 3 }  } +C
You might be interested in
Give the equation of the circle centered at the origin and passing through the point (0,5)
Julli [10]

Answer:

x^{2} +y^{2}=25

Step-by-step explanation

The standard equation of a circle centered at origin is  x^{2} +y^{2} =r^{2}

r = radius of the circle

The circle is passing through the point (0,5)

∴ radius  r=\sqrt{(0-0)^{2}+(5-0)^{2} }

               r=\sqrt{0+25}

               r=\sqrt{25}

               r^{2}=25

∴ The equation of the circle is

     x^{2} +y^{2} = 25

5 0
3 years ago
Select the correct answer.<br> Which statement is true?
dusya [7]

Answer:

third option is the correct

Step-by-step explanation:

A function is "odd" when f (-x) = - f (x) for all x. ... For example, functions like

  • f (x) = x3,
  • f (x) = x5,
  • f (x) = x7, ... are odd functions.
6 0
3 years ago
Read 2 more answers
Find the area of the shaded region
melamori03 [73]
LxW 5x5=25 If you know one side is five than the other side is 52 because they’re both equal its the radius compared to the diameter radius is five the diameter is 10
5 0
3 years ago
Read 2 more answers
This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive an
sleet_krkn [62]

Answer:

-6re−r [sin(6θ) - cos(6θ)]

Step-by-step explanation:

the Jacobian is ∂(x, y) /∂(r, θ) = δx/δθ × δy/δr - δx/δr × δy/δθ

x = e−r sin(6θ), y = er cos(6θ)

δx/δθ = -6rcos(6θ)e−r sin(6θ), δx/δr = -sin(6θ)e−r sin(6θ)

δy/δθ = -6rsin(6θ)er cos(6θ), δy/δr = cos(6θ)er cos(6θ)

∂(x, y) /∂(r, θ) =  δx/δθ × δy/δr - δx/δr × δy/δθ

= -6rcos(6θ)e−r sin(6θ) × cos(6θ)er cos(6θ) - [-sin(6θ)e−r sin(6θ) × -6rsin(6θ)er cos(6θ)]

= -6rcos²(6θ)e−r (sin(6θ) - cos(6θ)) - 6rsin²(6θ)e−r (sin(6θ) - cos(6θ))

= -6re−r (sin(6θ) - cos(6θ)) [cos²(6θ) + sin²(6θ)]

= -6re−r [sin(6θ) - cos(6θ)]     since  [cos²(6θ) + sin²(6θ)] = 1

6 0
4 years ago
Enter a fraction that is equivalent to 1/5 with a numerator of 8.
photoshop1234 [79]

Answer:

lol imagine

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the value of 5w if w = 6
    14·2 answers
  • What happens to the volume of a rectangular prism when its length is tripled?
    13·1 answer
  • If x = -2 and the function is y = x + 3, what is the value of y?
    11·2 answers
  • Find the indicated angle please help (multiple choice)
    9·1 answer
  • How do I do this and what’s the answers?
    5·1 answer
  • Each endpoint of a side of a polygon is
    6·2 answers
  • Will give brainliest 30 points
    11·1 answer
  • Show work btw <br> …..<br> math math math
    9·1 answer
  • Which hyperbola has one focus point in common with the hyperbola (y+11)^2/(15^2)-(x-7)^2/(8^2)=1
    13·1 answer
  • Help me please it’s l haven’t learnt it
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!