Answer:
y = 2/5x - 2
Step-by-step explanation:
Step 1: Write equation
2x - 5y = 10
Step 2: Solve for <em>y</em>
- Subtract 2x on both sides: -5y = 10 - 2x
- Divide both sides by -5: y = -2 + 2/5x
- Rewrite: y = 2/5x - 2
Answer:
$561
Step-by-step explanation:
4100 x0,06= 246
246+315=561
The ratio of the area of the <u>first figure</u> to the area of the <u>second figure</u> is 4:1
<h3>Ratio of the areas of similar figures </h3>
From the question, we are to determine the ratio of the area of the<u> first figure</u> to the area of the <u>second figure</u>
<u />
The two figures are similar
From one of the theorems for similar polygons, we have that
If the scale factor of the sides of <u>two similar polygons</u> is m/n then the ratio of the areas is (m/n)²
Let the base length of the first figure be ,m = 14 mm
and the base length of the second figure be, n = 7 mm
∴ The ratio of their areas will be



= 4:1
Hence, the ratio of the area of the <u>first figure</u> to the area of the <u>second figure</u> is 4:1
Learn more on Ratio of the areas of similar figures here: brainly.com/question/11920446
Answer:
<em>Any width less than 3 feet</em>
Step-by-step explanation:
<u>Inequalities</u>
The garden plot will have an area of less than 18 square feet. If L is the length of the garden plot and W is the width, the area is calculated by:
A = L.W
The first condition can be written as follows:
LW < 18
The length should be 3 feet longer than the width, thus:
L = W + 3
Substituting in the inequality:
(W + 3)W < 18
Operating and rearranging:

Factoring:
(W-3)(W+6)<0
Since W must be positive, the only restriction comes from:
W - 3 < 0
Or, equivalently:
W < 3
Since:
L = W + 3
W = L - 3
This means:
L - 3 < 3
L < 6
The width should be less than 3 feet and therefore the length will be less than 6 feet.
If the measures are whole numbers, the possible dimensions of the garden plot are:
W = 1 ft, L = 4 ft
W = 2 ft, L = 5 ft
Another solution would be (for non-integer numbers):
W = 2.5 ft, L = 5.5 ft
There are infinitely many possible combinations for W and L as real numbers.
Answer:
No extraneous solution
Step-by-step explanation:
We have the logarithmic equation given by,
![\log_{2}[\log_{2}(\sqrt{4x})]=1](https://tex.z-dn.net/?f=%5Clog_%7B2%7D%5B%5Clog_%7B2%7D%28%5Csqrt%7B4x%7D%29%5D%3D1)
i.e. 
i.e. 
i.e. 
i.e. 
i.e. 
i.e. 
So, the solution of the given equation is x=4.
Now, as we domain of square root function is x > 0 and also, the domain of logarithmic function is
.
Therefore, the domain of the given function is x > 0.
We know that the extraneous solution is the solution which does not belong to the domain.
But as x=4 belongs to the domain x > 0.
Thus, x = 4 is not an extraneous solution.
Hence, this equation does not have any extraneous solution.