1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NARA [144]
3 years ago
13

Acoustics is the study of sound. In large rooms, such as theaters where large orchestras perform, cushioned seats and carpeted f

loors are often used to help ________ the sound so that there are few noise reflections.
Physics
1 answer:
stiv31 [10]3 years ago
8 0

Answer:

soundproofing or absorbing

Explanation:

Acoustics is the study of waves, vibrations and sound and its most common applications lie in the sound and noise control industries. Acoustic protection is the application of soft and porous material to protect individuals against undesirable sounds and noises.

cushioned seats and carpeted floors are used in soundproofing to block the unwanted noise and sound.

The Cheapest Ways To Soundproof A Room

1. Rugs:

Rugs make excellent vibration dampeners.

2. Weather Stripping:

If you know that sound is getting into your room via the door or the windows then a very cheap and effective solution can be to use weather stripping.

3. Blankets.

4. Curtains.

5. Egg Cartons.

Homemade Soundproofing Panels

You might be interested in
A bowling ball of 35.2 kg, generates 218 kg* m/s units of momentum. What is the velocity of the ball?
Aleonysh [2.5K]

Answer:

6.19 m/s

Explanation:

p = mv \\ 218 = (35.2)(v ) \\ v = 6.19 \: ms {}^{ - 1}

7 0
3 years ago
A(n) 131 g ball is dropped from a height
larisa [96]

Answer:

26.59 N/m

Explanation:

From the question given above, the following data were obtained:

Mass (m) = 131 g

Extention (e) = 4.82755 cm

Acceleration due to gravity (g) = 9.8 m/s²

Spring constant (K) =?

Next, we shall convert 131 g to Kg. This can be obtained as follow:

1000 g = 1 Kg

Therefore,

131 g = 131 g × 1 Kg / 1000 g

131 g = 0.131 Kg

Thus, 131 g is equivalent to 0.131 Kg.

Next, we shall the force exerted by the ball on the spring. This can be obtained as follow:

Mass (m) = 0.131 Kg

Acceleration due to gravity (g) = 9.8 m/s²

Force (F) =?

F = ma

F = 0.131 × 9.8

F = 1.2838 N

Next, we shall convert 4.82755 cm to metre (m)

This can be obtained as follow:

100 cm = 1 m

Therefore,

4.82755 cm = 4.82755 cm × 1 m / 100 cm

4.82755 cm = 0.0482755 m

Thus, 4.82755 cm is equivalent to 0.0482755 m

Finally, we shall determine the spring constant as follow:

Force (F) = 1.2838 N

Extention (e) = 0.0482755 m

Spring constant (K) =?

F = Ke

1.2838 = K × 0.0482755

Divide both side by 0.0482755

K = 1.2838 / 0.0482755

K = 26.59 N/m

Thus the spring constant is 26.59 N/m

7 0
3 years ago
which statements about velocity are true? check all that apply. a. for velocity, you must have a number, a unit, and a direction
satela [25.4K]
a). for velocity, you must have a number, a unit, and a direction.
Yes.  This one isn't bad.  The 'number' and the 'unit' are the speed.

b). the si units for velocity are miles per hour.
No.  That's silly. 
'miles' is not an SI unit, and 'miles per hour'
is only a speed, not a velocity. 

c). the symbol for velocity is .
You can use any symbol you want for velocity, as long as
you make its meaning very clear, so that everybody knows
what symbol you're using for velocity.
But this choice-c is still wrong, because either it's incomplete,
or else it's using 'space' for velocity, which is a very poor symbol.

d). to calculate velocity, divide the displacement by time.
Yes, that's OK, but you have to remember that the displacement
has a direction, and so does the velocity.
3 0
3 years ago
A circuit is set up such that it has a current of 8 A. What would be the new current if the resistance was increased by a factor
RUDIKE [14]

Answer:

4 A

Explanation:

The relationship between current, voltage and resistance in a circuit is given by Ohm's law:

V=RI

where

V is the voltage

R is the resistance

I is the current

The equation can also be rewritten as

I=\frac{V}{R}

from which we see that the current is inversely proportional to the resistance, R.

In this problem, the initial current is I = 8 A. Then the resistance is doubled:

R ' = 2R

So the new current is

I'=\frac{V}{R'}=\frac{V}{2R}=\frac{1}{2}(\frac{V}{R})=\frac{I}{2}=4 A

so the current is halved.

7 0
3 years ago
What is the force per unit area at this point acting normal to the surface with unit nor- Side View √√ mal vector n = (1/ 2)ex +
Mumz [18]

Complete Question:

Given \sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] at a point. What is the force per unit area at this point acting normal to the surface with\b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z   ? Are there any shear stresses acting on this surface?

Answer:

Force per unit area, \sigma_n = 28 MPa

There are shear stresses acting on the surface since \tau \neq 0

Explanation:

\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]

equation of the normal, \b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z

\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

Traction vector on n, T_n = \sigma \b n

T_n =  \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]

T_n = \frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.

\sigma_n = T_n . \b n

\sigma \b n = (\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z) . ((1/ \sqrt{2} ) \b e_x + 0 \b  e_y +(1/ \sqrt{2}) \b e_z)\\\\\sigma \b n = 28 MPa

If the shear stress, \tau, is calculated and it is not equal to zero, this means there are shear stresses.

\tau = T_n  - \sigma_n \b n

\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau =  \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z

\tau = \sqrt{(-5/\sqrt{2})^2  + (27/\sqrt{2})^2 + (5/\sqrt{2})^2} \\\\ \tau = 19.74 MPa

Since \tau \neq 0, there are shear stresses acting on the surface.

3 0
3 years ago
Other questions:
  • Brad is working on a speed problem in physics class. The problem tells him that a girl runs from her house to the park 0.05 km a
    10·2 answers
  • A gust of wind blows an apple from a tree. As the apple falls, the force of gravity on the apple is 9.39 N downward, and the for
    6·1 answer
  • Which shared property belongs in the region marked "B"?
    15·1 answer
  • What is the length of an aluminum rod at 65°C if its length at 15°C is 1.2 meters?
    13·2 answers
  • A plug-in transformer supplies 9 V to a video game system. (a) How many turns are in its secondary coil, if its input voltage
    6·2 answers
  • Using the graph below: What was the instantaneous velocity at t = 12 seconds? What was the distance and displacement of this obj
    14·1 answer
  • An electric field of 8.30 x 10^5 V/m is desired between two parallel plates, each of area 31.5 cm^2 and separated by 2.45 mm. Th
    13·1 answer
  • There are strong winds on these trees. What makes the wind stronger? Why are they blowing from different directions?
    8·1 answer
  • An electron initially at rest is placed in an electric field 2x104 N/C directed west. The distance between the plates is 1 cm.
    12·1 answer
  • PLEASE HELP NEED ANSWER NOW!!!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!