Answer:
V= 6.974 m/s
Explanation:
Component( box) weight acting parallel and down roof 88(sin39.0°)=55.4 N
Force of kinetic friction acting parallel and up roof = 18.0 N
Fnet force acting on tool box acting parallel and down roof
Fnet= 55.4 - 18.0
Fnet=37.4 N
acceleration of tool box down roof
a = 37.4(9.81)/88.0
a= 4.169 m/s²
d = 4.90 m
t = √2d/a
t= √2(4.90)/4.169
t= 1.662 s
V = at
V= 4.169(1.662)
V= 6.974 m/s
Electricity. I took something like this hope this helps :)
Vaginal opening. areola is the part of the breast.
The first law of thermodynamics states the conservation of energy and heat where the total energy in an isolated system may be transformed into another, but never created or destroyed. If 286 J of energy was released to the room, then also 286 J of energy was also removed from food in that refrigerator assuming it is an isolated system. :)
Read more on Brainly -
brainly.com/sf/question/3844753I tried to help
Answer:
4.5 s, 324 ft
Explanation:
The object is projected upward with an initial velocity of
The equation that describes its height at time t is
(1)
where t, the time, is measured in seconds.
In order to find the time it takes for the object to reach the maximum height, we must find an expression for its velocity at time t, which can be found by calculating the derivative of the position, s(t):
(2)
At the maximum heigth, the vertical velocity is zero:
v(t) = 0
Substituting into the equation above, we find the corresponding time at which the object reaches the maximum height:
And by substituting this value into eq.(1), we also find the maximum height: