Answer:
v' = -0.0906 m/s
Explanation:
given,
mass of cannon, M = 2240 Kg
mass of the ball, m = 15.5 Kg
speed of cannon ball, v = 131 m/s
speed of he cannon = ?
initial speed of cannon and the cannon ball is equal to 0 m/s
using conservation of energy
(M+m)V = M v' + m v
(M+m) x 0= 22400 v' + 15.5 x 131
22400 v' = -2030.5
v' = -0.0906 m/s
negative sign represent the canon will move in opposite direction of the ball.
hence, speed of cannon is equal to 0.0906 m/s
When we have two sound waves with frequencies f1 and f2 that interfere, the beat frequency is equal to the absolute value of the difference of the two frequencies, so in our problem:
Answer:
3m/s
Explanation:
K.E= (1/2)mv^2
216j= (1/2)48kg • v^2
216J=24kg•v^2
v^2 = (216J)/(24kg)
v^2= 9m^2/s^2
/sqrt{v^2} = /sqrt{9m^2/s^2}
V =3m/s
The sum of the maximum voltages across each element in a series RLC circuit is usually greater than the maximum applied voltage because voltages are added by vector addition.
<h3>What is the Kichoff's loop rule?</h3>
Kirchhoff's loop rule states that the algebraic sum of potential differences, as well as the voltage supplied by the voltage sources and resistances, in any loop must be equal to zero.
In a series RLCcircuit, the voltages are not added by scalar addition but by vector addition.
Kirchhoff's loop rule is not violated since the voltages across different elements in the circuit are not at their maximum values.
Therefore, the sum of the maximum voltages across each element in a series RLC circuit is usually greater than the maximum applied voltage because voltages are added by vector addition.
Learn more about Kichoff's loop rule at: https://brainly.in/question/35360816
#SPJ1