The answer is in the picture.
The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.
Answer:
Ff = 839.05 N
Explanation:
We can use the equation:
Ff = μ*N
where <em>N</em> can be obtained as follows:
∑ Fc = m*ac ⇒ N - F = m*ac = m*ω²*R ⇒ N = F + m*ω²*R
then if
F = 32 N
m = 133 Kg
R = 0.635 m
ω = 95 rev /min = (95 rev / min)(2π rad / 1 rev)(1 min / 60 s) = 9.9484 rad /s
we get
N = 32 N + (133 Kg)*(9.9484 rad /s)²*(0.635 m) = 8390.53 N
Finally
Ff = μ*N = 0.10*(8390.53 N) = 839.05 N
Answer:
mantle convection is the very slow creeping motion of earths solid silicate mantle caused by convection currents carrying heat from the interior to the planet's surface.
The magnetizing current in a transformer is rich in 3rd harmonic. This is because harmonics are AC voltages and currents with frequencies that are generally higher.