1. The subscript when writing the notation is always dedicated to the atomic number of the element. Since the atomic number for Mercury, Hg, is 80, then the subscript is <em>80</em>.
2. For the second problem, you just have to balance out the subscripts and superscripts of the reactions.
Superscripts: 203 = 203 + ?; To balance, the missing number would be 0.
Subscripts: 80 = 81 + ?; To balance, the missing number would be -1.
<em>Hence the particle produced is actually an <u>electron</u>, or a <u>beta particle</u> (not an element). The <u>mass number is 0</u>, and the <u>atomic number is 0 </u>(since it does not contain any proton).</em>
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░
░░░░░░░▄▄▐▌▄▄░░░
░░░░░░░▀███▀█░▄░
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█░
This is bob. If you brainliest him. He will reward you with a certain script.
Answer:
n = 2 moles (1 sig-fig)
Explanation:
Using the Ideal Gas Law equation (PV = nRT), solve for n (= moles) and substitute data for ...
pressure = P(atm) = 100atm
volume =V(liters) = 50L
gas constant = R = 0.08206L·atm/mol·K
temperature = T(Kelvin) = °C + 273 = (35 + 273)K = 308K
PV = nRT => n = PV/RT = (100atm)(50L)/(0.08206L·atm/mol·K)(308K)
∴ n(moles) = 1.978moles ≅ 2 moles gas (1 sig-fig) per volume data (= 50L) that has only 1 sig-fig. (Rule => for multiplication & division computations round final answer to the measured data having the least number of sig-figs).
Yes I think & I Belive it moves across the surface