Answer:
The correct answer is <em>b. Negative</em>
Explanation:
An electrolytic cell is based on a reduction- oxidation reaction which is non spontaneous. That means that the standard cell potencial (Eº) is negative. For this reason, an electrical potential must be applied in order to force the reaction. Conversely, a galvanic cell is based on a spontaneous redox reaction, so the galvanic cell produces electrical energy.
In the crystallization process the solid compound is dissolved in the solvent at elevated temperature and the crystallize product obtained by slow cooling of the solution. Here the solubility of acetanilide at 100°C is 1g per 20mL of water. Thus to dissolve 500mg of acetanilide at high temperature that is 100°C we need 10mL of water.
Now at 25°C after the re-crystallization there will be some amount of dissolve acetanilide. Which can be calculated as- 185mL of water is needed to dissolve 1g or 1000mg of acetanilide at 25°C. Thus in 10mL of water there will be
gmg of acetanilide.
Answer:
P1V1= P2V2
Explanation:
Inverse relationship
V2 = V1 X P1/P2
V2= 14.3 L x 45.0 mm Hg/63.0 mmHg= 8.99
Alright sorry you're getting the answer hours later, but i can help with this.
so you're looking for specific heat, the equation for it is <span>macaΔTa = - mbcbΔTb with object a and object b. that's mass of a times specific heat of a times final minus initial temperature of a equals -(mass of b times specific heat of b times final minus initial temperature of b)
</span>so putting in your values is, 755g * ca * (75 celsius - 84.5 celsius) = -(50g * cb * (75 celsius - 5 celsius))
well we know the specific heat of water is always 4180J/kg celsius, so put that in for cb
with a bit of simplification to the equation by doing everything on each side first you have, -7172.5 * ca = -14630000
divide both sides by -7172.5 so you can single out ca and you get, ca= 2039.74
add units for specific heat which are J/kg celsius and the specific heat of the material is 2039.74 J/kg celsius
Yes, S-blocks are metals except for helium and hydrogen. The S-block metals are shiny, silvery and relatively soft, although they can easily lose electrons. Helium and hydrogen have valence electrons but also lack some similar properties as the other metals.