Answer:
The change in momentum is 28265.71 kg-m/s.
Explanation:
Given that,
Mass of a car, m = 877 kg
Initial velocity of the car, u = 0 (at rest)
Final velocity of the car, v = 116 km/h = 32.23 m/s
Time, t = 0.951 s
We need to find the change in momentum produced by the force. It can be calculated as the difference of final momentum and the initial momentum.

So, the change in momentum is 28265.71 kg-m/s.
Answer:
2.2N
Explanation:
Given parameters:
Work done = 379.5J
Height = 173m
Unknown:
Amount of force exerted on the sled = ?
Solution:
The amount of force she exerted on the sled is the same as her weight.
Work done is the force applied to move a body through a distance.
Work done = mgh
m is the mass
g is the acceleration due to gravity
h is the height
mg = weight;
Work done = weight x h
379.5 = weight x 173
weight =
= 2.2N
The easiest way to build a unit for energy is to remember that
'work' is energy, and
Work = (force) x (distance).
So energy is (unit of force) x (unit of distance)
[Energy] = (Newton) (meter) .
'Newton' itself is a combination of base units, so
energy is really
(kilogram-meter/sec²) (meter)
= kilogram-meter² / sec² .
That unit is so complicated that it's been given a special,
shorter name:
Joule .
It doesn't matter what kind of energy you're talking about.
Kinetic, potential, nuclear, electromagnetic, food, chemical,
muscle, wind, solar, steam ... they all boil down to Joules.
And if you generate, use, transfer, or consume 1 Joule of
energy every second, then we say that the 'power' is '1 watt'.