Answer:
Water normally freezes at 0°C (32°F). Salt lowers the freezing temperature. (That is, it can remain a liquid at much lower temperatures.)
When sprinkled on ice, the salt lowers the freezing temperature of the water which effectively melts the ice when the salt dissolves into it. There is a limit to how low it can reduce the temperature, though. If the temperature drops below -9°C (15°F), it's too cold for the salt to dissolve into the ice.
When making ice cream, the salt lowers the temperature of the ice and water sufficiently enough to freeze the cream.
Answer:
I have a screenshot of this.
Explanation:
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
The speed of the satellite in a circular orbit around the Earth is 1.32 x 10⁵ m/s.
<h3>
Speed of the satellite</h3>
v = √(GM/r)
where;
- G is universal gravitation constant
- M is mass of Earth
- r is radius of the satellite
v = √(6.67 x 10⁻¹¹ x 5.98 x 10²⁴/3.57 x 6.37x 10³)
v = 1.32 x 10⁵ m/s
Thus, the speed of the satellite in a circular orbit around the Earth is 1.32 x 10⁵ m/s.
Learn more about speed of satellite here: brainly.com/question/22247460
#SPJ1
The <em>gaseous state</em> of matter does that. A gas expands to take the shape and volume of whatever you put it into.