Answer:
p = m .v momentum = mass • velocity. [kg • m/s] [kg] [m/s]. Kinetic Energy. KE = 12 • m • v ... 1. A 1500 kg car traveling at 15 m/s to the south collides with a 4500 kg truck that is ... What is the final velocity of the two-vehicle mass? ... m/s. What is the velocity of the joined cars after the collision? ... 5) = (1.5x104+1.5x604) VELVE.
Explanation:
<u>
Answer
</u>
The impulse on the second trial is smaller is smaller than in the first trial.
<u>Explanation
</u>
Impose of a body is that change in momentum during a time interval. If the change of momentum takes longer then, the impulse of a force is less. I a moving object hits a hard surface the rate of change of momentum is very high. e.i in the first trial, the egg breaks because it hits the hard surface(ground).
In the second trial, the foam cushion absorbs the shock and prolongs the time of impact with the egg hence decreasing the impulse.
Answer:
The force that is exerted when a shopping cart is pushed is a type of push force, supplied by the muscles of the cart pusher's body.
The forces that causes a metal ball to move toward a magnet is a type of pull force that is as a result of the magnetic field forces.
Explanation:
Forces are divided into push forces that tends to accelerate a body away from the source of the force, and pull forces that accelerates the body towards the force source.
Examples of push forces includes pushing a cart, pushing a table, repulsion of two similar poles of a magnet etc. Examples of pull forces includes a attractive force between two dissimilar poles of a magnet, pulling a load by a rope, a dog pulling on a leash etc.
Answer:
A vacuum
Explanation:
Sound waves are examples of mechanical waves. Mechanical waves are waves which are transmitted through the vibrations of the particles in a medium.
For example, sound waves in air consist of oscillations of the air particles, which vibrate back and forth (longitudinal wave) along the direction of propagation of the wave itself.
Given this definition of mechanical wave, we see that such a wave cannot propagate if there is no medium, because there are no particles that would oscillate. Therefore, among the choices given, the following one:
a vacuum
represent the only situation in which a sound wave cannot propagate through: in fact, there are no particles in a vacuum, so the oscillations cannot occur. In all other cases, instead, sound waves can propagate.
I think b support body weight