Answer:
(B) sound/kinetic
(E) Gravitational/kinetic
(F) mechanical/sound
Explanation:
(B) the useful energy transfer is sound but a by product of that is kinetic or mechanical energy because of the vibrations needed to make sound
(E) the useful energy transfer is Gravitational potential but a by product of that is kinetic or mechanical energy
(F) the useful energy transfer is kinetic or mechanical energy but the byproduct is noise and occasionally heat
Answer:
Velocity=14[m/s]
Explanation:
We can solve this problem by using the principle of energy conservation, where potential energy becomes kinetic energy.
In the attached image we can see the illustration of the ball falling from the height of 20 meters, at this time the potential energy will have the following value.
![Ep=m*g*h\\where:\\m=3[kg]\\h=20[m]\\](https://tex.z-dn.net/?f=Ep%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cm%3D3%5Bkg%5D%5C%5Ch%3D20%5Bm%5D%5C%5C)
![Ep=3*9.81*20\\Ep=588.6[J]](https://tex.z-dn.net/?f=Ep%3D3%2A9.81%2A20%5C%5CEp%3D588.6%5BJ%5D)
When the ball passes through half of the distance (10m) its potential energy will have decreased by half as shown below.
![Ep=3*9.81*10\\Ep=294.3[m]](https://tex.z-dn.net/?f=Ep%3D3%2A9.81%2A10%5C%5CEp%3D294.3%5Bm%5D)
If we know that potential energy is transformed into kinetic energy, we can find the value of speed.
![Ek=\frac{1}{2} *m*v^{2} \\therefore\\v=\sqrt{\frac{Ek*2}{m} } \\v=\sqrt{\frac{294.3*2}{3} } \\\\v=14[m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Ctherefore%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7BEk%2A2%7D%7Bm%7D%20%7D%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B294.3%2A2%7D%7B3%7D%20%7D%20%5C%5C%5C%5Cv%3D14%5Bm%2Fs%5D)
The appropriate response is amplitude. Amplitude is the target estimation of the level of progress (positive or negative) in environmental weight (the pressure and rarefaction of air atoms) created by sound waves.
I hope the answer will help you.
Answer:
B. They move more quickly and independently.
Answer:
I believe the answer is D or B mostly D
Explanation: