Answer:
The current is changing at the rate of 0.20 A/s
Explanation:
Given;
inductance of the inductor, L = 5.0-H
current in the inductor, I = 3.0 A
Energy stored in the inductor at the given instant, E = 3.0 J/s
The energy stored in inductor is given as;
E = ¹/₂LI²
E = ¹/₂(5)(3)²
E = 22.5 J/s
This energy is increased by 3.0 J/s
E = 22.5 J/s + 3.0 J/s = 25.5 J/s
Determine the new current at this given energy;
25.5 = ¹/₂LI²
25.5 = ¹/₂(5)(I²)
25.5 = 2.5I²
I² = 25.5 / 2.5
I² = 10.2
I = √10.2
I = 3.194 A/s
The rate at which the current is changing is the difference between the final current and the initial current in the inductor.
= 3.194 A/s - 3.0 A/s
= 0.194 A/s
≅0.20 A/s
Therefore, the current is changing at the rate of 0.20 A/s.
Answer:
331.28 K
Explanation:
To solve this problem, you need to know that the heat that the water at 373 K is equal to the heat that the water at 285 K gains.
First, we will asume that at the end of this process there won't be any water left in gaseous state.
The heat that the steam (H20(g)) loses is equal to the heat lost because the change of phase plus the heat lost because of the decrease in temperature:

The specific Heat c of water at 298K is 4.18 kJ/K*kg.
The latent heat cl of water is equal to 2257 kJ/kg.
The heat that the cold water gains is equal to heat necessary to increase its temperature to its final value:

Remember that in equilibrium, the final temperature of both bodies of water will be equal.
Then:

Answer:
The second universal law, the law of vibration, posits that everything (every atom, object, and living thing) is in constant motion, vibrating at a specific frequency.
Explanation:
Please mark brainly