Answers:
(a) f is increasing at
![(-\infty,-2) \cup (2,\infty)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C-2%29%20%5Ccup%20%282%2C%5Cinfty%29)
.
(b) f is decreasing at
![(-2,2)](https://tex.z-dn.net/?f=%28-2%2C2%29)
.
(c) f is concave up at
![(2, \infty)](https://tex.z-dn.net/?f=%282%2C%20%5Cinfty%29)
(d) f is concave down at
![(-\infty, 2)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C%202%29)
Explanations:
(a) f is increasing when the derivative is positive. So, we find values of x such that the derivative is positive. Note that
![f'(x) = 15x^2 - 60 ](https://tex.z-dn.net/?f=f%27%28x%29%20%3D%2015x%5E2%20-%2060%0A)
So,
![ f'(x) \ \textgreater \ 0 \\ \\ \Leftrightarrow 15x^2 - 60 \ \textgreater \ 0 \\ \\ \Leftrightarrow 15(x - 2)(x + 2) \ \textgreater \ 0 \\ \\ \Leftrightarrow \boxed{(x - 2)(x + 2) \ \textgreater \ 0} \text{ (1)}](https://tex.z-dn.net/?f=%0Af%27%28x%29%20%5C%20%5Ctextgreater%20%5C%20%200%0A%5C%5C%0A%5C%5C%20%5CLeftrightarrow%2015x%5E2%20-%2060%20%5C%20%5Ctextgreater%20%5C%20%200%0A%5C%5C%0A%5C%5C%20%5CLeftrightarrow%2015%28x%20-%202%29%28x%20%2B%202%29%20%5C%20%5Ctextgreater%20%5C%20%200%0A%5C%5C%0A%5C%5C%20%5CLeftrightarrow%20%5Cboxed%7B%28x%20-%202%29%28x%20%2B%202%29%20%5C%20%5Ctextgreater%20%5C%20%200%7D%20%5Ctext%7B%20%20%20%281%29%7D)
The zeroes of (x - 2)(x + 2) are 2 and -2. So we can obtain sign of (x - 2)(x + 2) by considering the following possible values of x:
-->> x < -2
-->> -2 < x < 2
--->> x > 2
If x < -2, then (x - 2) and (x + 2) are both negative. Thus, (x - 2)(x + 2) > 0.
If -2 < x < 2, then x + 2 is positive but x - 2 is negative. So, (x - 2)(x + 2) < 0.
If x > 2, then (x - 2) and (x + 2) are both positive. Thus, (x - 2)(x + 2) > 0.
So, (x - 2)(x + 2) is positive when x < -2 or x > 2. Since
![f'(x) \ \textgreater \ 0 \Leftrightarrow (x - 2)(x + 2) \ \textgreater \ 0](https://tex.z-dn.net/?f=f%27%28x%29%20%5C%20%5Ctextgreater%20%5C%20%200%20%5CLeftrightarrow%20%28x%20-%202%29%28x%20%2B%202%29%20%20%5C%20%5Ctextgreater%20%5C%20%200)
Thus, f'(x) > 0 only when x < -2 or x > 2. Hence f is increasing at
![(-\infty,-2) \cup (2,\infty)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C-2%29%20%5Ccup%20%282%2C%5Cinfty%29)
.
(b) f is decreasing only when the derivative of f is negative. Since
![f'(x) = 15x^2 - 60](https://tex.z-dn.net/?f=f%27%28x%29%20%3D%2015x%5E2%20-%2060%20)
Using the similar computation in (a),
![f'(x) \ \textless \ \ 0 \\ \\ \Leftrightarrow 15x^2 - 60 \ \textless \ 0 \\ \\ \Leftrightarrow 15(x - 2)(x + 2) \ \ \textless \ 0 \\ \\ \Leftrightarrow \boxed{(x - 2)(x + 2) \ \textless \ 0} \text{ (2)}](https://tex.z-dn.net/?f=f%27%28x%29%20%5C%20%5Ctextless%20%5C%20%20%5C%200%20%5C%5C%20%5C%5C%20%5CLeftrightarrow%2015x%5E2%20-%2060%20%5C%20%5Ctextless%20%5C%20%200%20%5C%5C%20%5C%5C%20%5CLeftrightarrow%2015%28x%20-%202%29%28x%20%2B%202%29%20%5C%20%5C%20%5Ctextless%20%5C%20%200%20%5C%5C%20%5C%5C%20%5CLeftrightarrow%20%5Cboxed%7B%28x%20-%202%29%28x%20%2B%202%29%20%5C%20%5Ctextless%20%5C%20%200%7D%20%5Ctext%7B%20%282%29%7D)
Based on the computation in (a), (x - 2)(x + 2) < 0 only when -2 < x < 2.
Thus, f'(x) < 0 if and only if -2 < x < 2. Hence f is decreasing at (-2, 2)
(c) f is concave up if and only if the second derivative of f is positive. Note that
![f''(x) = 30x - 60](https://tex.z-dn.net/?f=f%27%27%28x%29%20%3D%2030x%20-%2060)
Since,
![f''(x) \ \textgreater \ 0 \\ \\ \Leftrightarrow 30x - 60 \ \textgreater \ 0 \\ \\ \Leftrightarrow 30(x - 2) \ \textgreater \ 0 \\ \\ \Leftrightarrow x - 2 \ \textgreater \ 0 \\ \\ \Leftrightarrow \boxed{x \ \textgreater \ 2}](https://tex.z-dn.net/?f=f%27%27%28x%29%20%5C%20%5Ctextgreater%20%5C%20%200%0A%5C%5C%0A%5C%5C%20%5CLeftrightarrow%2030x%20-%2060%20%5C%20%5Ctextgreater%20%5C%20%200%0A%5C%5C%0A%5C%5C%20%5CLeftrightarrow%2030%28x%20-%202%29%20%5C%20%5Ctextgreater%20%5C%20%200%0A%5C%5C%0A%5C%5C%20%5CLeftrightarrow%20x%20-%202%20%5C%20%5Ctextgreater%20%5C%20%200%0A%5C%5C%0A%5C%5C%20%5CLeftrightarrow%20%5Cboxed%7Bx%20%5C%20%5Ctextgreater%20%5C%20%202%7D%20)
Therefore, f is concave up at
![(2, \infty)](https://tex.z-dn.net/?f=%282%2C%20%5Cinfty%29)
.
(d) Note that f is concave down if and only if the second derivative of f is negative. Since,
![f''(x) = 30x - 60](https://tex.z-dn.net/?f=f%27%27%28x%29%20%3D%2030x%20-%2060)
Using the similar computation in (c),
![f''(x) \ \textless \ 0 \\ \\ \Leftrightarrow 30x - 60 \ \textless \ 0 \\ \\ \Leftrightarrow 30(x - 2) \ \textless \ 0 \\ \\ \Leftrightarrow x - 2 \ \textless \ 0 \\ \\ \Leftrightarrow \boxed{x \ \textless \ 2}](https://tex.z-dn.net/?f=f%27%27%28x%29%20%5C%20%5Ctextless%20%5C%20%200%20%0A%5C%5C%20%5C%5C%20%5CLeftrightarrow%2030x%20-%2060%20%5C%20%5Ctextless%20%5C%20%200%20%0A%5C%5C%20%5C%5C%20%5CLeftrightarrow%2030%28x%20-%202%29%20%5C%20%5Ctextless%20%5C%20%200%20%0A%5C%5C%20%5C%5C%20%5CLeftrightarrow%20x%20-%202%20%5C%20%5Ctextless%20%5C%20%200%20%0A%5C%5C%20%5C%5C%20%5CLeftrightarrow%20%5Cboxed%7Bx%20%5C%20%5Ctextless%20%5C%20%202%7D)
Therefore, f is concave down at
![(-\infty, 2)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C%202%29)
.