1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
14

Hey there! posted picture of question help please

Mathematics
1 answer:
amm18123 years ago
3 0
For this case we have the following function:
 A (t) = P (1 + r / n) ^ nt
 Substituting values we have:
 A (4) = 500 * (1 + 0.09 / 1) ^ (1 * (4))
 A (4) = 705.790805
 Rounding we have:
 A (4) = 705.79
 Answer:
 
The answer for this case is given by:
 
A (4) = 705.79
 
option A
You might be interested in
Use technology to find points and then graph the line y=-5(x-5)+1 following the instructions below.
Svetach [21]

Given:

y=-5(x-5)+1

First, let us find two points from this equation.

We can set values of x and then solve for y.

Let us find the values of y when x = 1, 2, 3, 4, 5

\begin{gathered} y=-5(x-5)+1 \\ y=-5(1-5)+1=21 \\ y=-5(2-5)+1=16 \\ y=-5(3-5)+1=11 \\ y=-5(4-5)+1=6 \\ y=-5(5-5)+1=1 \end{gathered}

We now have a set of points:

(1, 21)

(2, 16)

(3, 11)

(4, 6)

(5, 1)

Since the given plane is limited to values of 10 and -10, the points that we can plot are the points (4, 6) and (5, 1)

The graph would then look like this:

6 0
1 year ago
P(×)= x(2x + 1)- 6x-3 <br>Factorize p(×) ​
kherson [118]

Step-by-step explanation:

P(X)=2x²-5x-3 is in the form ax²+bx+c

Using quadratic equation

x={-b±√(b²-4ac)}/2a

x=3,-1/2

4 0
3 years ago
Why don't parrallel lines cross
anzhelika [568]
Because they're parallel which means they stay side by side the whole time with the same distance between them
4 0
3 years ago
Read 2 more answers
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
A number h is not less than 7
Valentin [98]
H>7 is your answer :)
8 0
3 years ago
Read 2 more answers
Other questions:
  • Which is the best reason why step 1 is a good first step in the solution shown?
    13·1 answer
  • Write the equation 10x+5y=5 in the slope intercept form. Then graph the line
    10·1 answer
  • The ratio of golf balls to tennis balls in the coach bag 20 to 5 if there are 100 golf balls in the bag how many tennis ball are
    11·1 answer
  • Marie plants flowers in a planter that is 1 1/2 feet long and 1 2/3 feet wide. She plans to cover the entire area with fertilize
    7·1 answer
  • The monthly expenditures on food by single adults in one city are monthly distributed with a mean of $410 and a standard deviati
    9·1 answer
  • Solve for x:<br> x + 3x - 19 = 17
    5·1 answer
  • Math homework I need answers now
    6·1 answer
  • Solve 7z + 4 - 5z &gt; 8 + 12
    12·2 answers
  • 13<br> Find the scale factor
    9·2 answers
  • X -10 -3 4 11<br> y 1 6 30 120<br><br> Is the relationship linear, exponential, or neither?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!