Answer:
y =x^2 +8x +15
factories form
y =( x+5 )( x+3 )
x intercept where the graph meet the x axis
y = x^2 +8x +15
let y =0
0 = x^2 +8x +15
0 = ( x + 5) (x+3)
o = x+5 or 0 = x+3
-5 = x or x = - 3
x intercept
(-5;0)
(-3 ;0)
axis of symmetry : where you will cut the graph into two half
x = - b/2a
x = - 8/2(1)
x = - 8/2
x = - 4
Domain
XER
Range
y > -1
X² + 1 = 0
=> (x+1)² - 2x = 0
=> x+1 = √(2x)
or x - √(2x) + 1 = 0
Now take y=√x
So, the equation changes to
y² - y√2 + 1 = 0
By quadratic formula, we get:-
y = [√2 ± √(2–4)]/2
or √x = (√2 ± i√2)/2 or (1 ± i)/√2 [by cancelling the √2 in numerator and denominator and ‘i' is a imaginary number with value √(-1)]
or x = [(1 ± i)²]/2
So roots are [(1+i)²]/2 and [(1 - i)²]/2
Thus we got two roots but in complex plane. If you put this values in the formula for formation of quadratic equation, that is x²+(a+b)x - ab where a and b are roots of the equation, you will get the equation
x² + 1 = 0 back again
So it’s x=1 or x=-1
Answer:
yes
Step-by-step explanation:
Answer:
The third side must be 10: {3, 10, 10}; {10, 3, 3} is not possible.
Step-by-step explanation:
Everything depends on our understanding of "isosceles."
This term indicates that two sides of a given triangle are equal.
If two sides of an isosceles triangle have lengths of 3 and 10, then:
Either 1) Two sides have length 10 and the third side has length 3. This is certainly possible
or
2) sides have length 3 and the third side has length 10. This is NOT possible, since 3 + 3 adds up to 6, which is less than 10.
to calculate pi you can use the Nilakantha Series.