Answer:
As pressure goes up, volume goes down.
Explanation:
Pressure and volume of a gas are inversely proportional. This means that as pressure goes up, volume goes down. And as volume goes up, pressure goes down.
Cheers.
If the mass of the object and the volume of the object is determined;
Then, the density of the object is determined by taking the ratio of the mass and volume.
<h3>What is density of an object?</h3>
The density of an object is the ratio of the mass and volume of that object.
Mathematically;
To determine the density of an object therefore, the physical characteristics of mass and the volume of the object are measured.
The mass of the object is obtained using a scale or a balance.
The volume of the object if a solid is obtained using a displacement bottle. If it is a liquid, a measuring cylinder is used.
The density of the object is then obtained by taking the ratio of the mass and the volume of the object.
In conclusion, the density of an object is determined from the volume and mass ratio.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Answer:
t = 6.09 seconds
Explanation:
Given that,
Speed, v = 44.1 cm/s
Distance, d = 269 cm
We need to find the time interval of the marble. Speed is distance per unit time.

Hence, the time interval of the marble is 6.09 seconds.
In Newton's Cradle experiment we know that all cradles of same mass and identical to each other
Now we know that when two identical objects collide elastically then they interchange their velocity
So here we have same illustration
When Newton pulls up a cradle and release it will move hit another cradle which is at rest
Due to elastic collision between them first cradle comes to rest and another cradle will move ahead with same speed this process remains the same and one by one all cradle hit another.
So at the last the cradle at the end will move off with the same speed as the first cradle will hit with the speed.
So in this experiment the cradle at the last end will move off at same distance away from the right end as that of left end we pull the cradle.
So here we can say that in horizontal direction when all cradles are colliding each other there is no external force on the system so momentum is conserved and they all will move off with same speed and hence we observe the above condition.
Answer:
F_A = 8 F_B
Explanation:
The force exerted by the planet on each moon is given by the law of universal gravitation
F = 
where M is the mass of the planet, m the mass of the moon and r the distance between its centers
let's apply this equation to our case
Moon A
the distance between the planet and the moon A is r and the mass of the moon is 2m
F_A = G \frac{2m M}{r^{2} }
Moon B
F_B = G \frac{m M}{(2r)^{2} }
F_B = G \frac{m M}{4 r^{2} }
the relationship between these forces is
F_B / F_A =
= 1/8
F_A = 8 F_B