Answer:
The car's angular speed is
.
Explanation:
Angular velocity is usually measured with
, so I'm going to use that to answer your question.
The relationship between tangential velocity and angular velocity (ω) is given by:

Using the values from the question, we get:


Therefore, the car's angular speed is
.
Hope this helped!
The answer is A.Yes
Explanation:
The amplitude of a wave is the height of a wave as measured from the highest point of the wave to the lowest on the wave.
Answer:
force-strength,power or energy as an attribute of motion, movement or action. Example: Frictional force.
when the apple moves in a horizontal circle, the tension force in the string provides the necessary centripetal force to move in circle. the tension in the string is given as
T=mv²/r
where T = tension force in the string , m = mass of the apple
v = speed of apple , r = radius of circle.
clearly , tension force depends on the square of the speed. hence greater the speed, greater will be the tension force.
at some point , the speed becomes large enough that it makes the tension force in the string becomes greater than the tensile strength of the string. at that point , the string breaks
Answer:
The velocity of the plane at take off is 160 m/s.
The distance travel by the plane in that time is 3200 meter.
Explanation:
Given:
Acceleration, a = 4 m/s²
Time, t = 40 s
u = 0 i .e initial velocity
To Find:
velocity , v = ?
distance , s =?
Solution:
we have first Kinematic equation
v = u + at
∴ v = 0 + 4×40
∴ v = 160 m/s
Now by Third Kinematic equation

∴ s = 0 + 0.5 × 4× 40²
∴ s = 3200 meter