I would say A. because during the solar eclipse you cannot see the suns Photosphere at all, and the corona is the light that emits around the moon during the eclipse.
Given the the current flowing in the circuit and the elapsed time, the charge that passes through the LED is 1260 Coulombs.
<h3>What is Current?</h3>
Current is simply the rate of flow of charged particles i.e electrons caused by EMF or voltage.
If a charge passes through the cross-section of a conductor in a given time, the current I is expressed as;
I = Q/t
Where Q is the charge and t is time elapsed.
Given the data in the question;
- Time elapsed t = 1hr = 3600s
- Current I = 350mA = 0.35A
We substitute our given values into the expression above to determine the charge.
I = Q/t
Q = I × t
Q = 0.35A × 3600s
Q = 1260C
Therefore, given the the current flowing in the circuit and the elapsed time, the charge that passes through the LED is 1260 Coulombs.
Learn more about current here: brainly.com/question/3192435
#SPJ1
<h3>
Answer:</h3>

<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Physics</u>
<u>Energy</u>
Elastic Potential Energy: 
- U is energy (in J)
- k is spring constant (in N/m)
- Δx is displacement from equilibrium (in m)
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
k = 7.50 N/m
Δx = 0.40 m
<u>Step 2: Find Potential Energy</u>
- Substitute in variables [Elastic Potential Energy]:

- Evaluate exponents:

- Multiply:

- Multiply:

Answer:
90%
Explanation:
if you lose 10% of a 100 you get 90
Because the fossil show layers and those layers show what kind of settlements where left behind at that layer