1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
3 years ago
12

A certain unbalanced force gives a 5kg object an acceleration of 15 m/s2. What would be the acceleration if the same force was a

pplied to 30 kg object ?
Physics
1 answer:
stira [4]3 years ago
7 0

Answer:

a2 = 2.5 m/s2

Explanation:

F1 = m1 a1 We use the same force so F1 = F2

= 5kg × 15m/s2 F2 = m2 a2

= 75N a2 is required

a2 = F2 / m2

= 75N / 30 kg

= 2.5 m/s2

You might be interested in
A hummingbird can flutter its wings 4,800 times per minute.
Marianna [84]
80 flutters per second
4 0
3 years ago
Read 2 more answers
For all those who are in k12 I need help on this paragraph
svetoff [14.1K]

Answer:

its bad

Explanation:

4 0
3 years ago
How to solve it? Three capacitors with capacities of 600 pF, 300 pF, 200 pF are connected in series. The 60 V voltage is applied
adell [148]

Answer:

1. Voltage across 600 pF is 10 V.

2. Voltage across 300 pF is 20 V.

3. Voltage across 200 pF is 30 V.

Explanation:

We'll begin by calculating the total capacitance of capacitor. This can be obtained as follow:

Capicitance 1 (C₁) = 600 pF

Capicitance 2 (C₂) = 300 pF

Capicitance 3 (C₃) = 200 pF

Total capacitance (Cₜ) =?

1/Cₜ = 1/C₁ + 1/C₂ + 1/C₃

1/Cₜ = 1/600 + 1/300 + 1/200

1/Cₜ = 1 + 2 + 3 / 600

1/Cₜ = 6/600

1/Cₜ = 1/100

Cₜ = 100 pF

Next, we shall convert 100 pF to Farad (F). This can be obtained as follow:

1 pF = 1×10¯¹² F

Therefore,

100 pF = 100 pF × 1×10¯¹² F / 1 pF

100 pF = 1×10¯¹⁰ F

Thus, 100 pF is equivalent to 1×10¯¹⁰ F.

Next, we shall determine the charge. This can be obtained as follow:

Voltage (V) = 60 V

Capicitance (C) = 1×10¯¹⁰ F

Charge (Q) =?

Q = CV

Q = 60 × 1×10¯¹⁰ F

Q = 6×10¯⁹ C

1. Determination of the voltage across 600 pF.

Capicitance 1 (C₁) = 600 pF = 6×10¯¹⁰ F

Charge (Q) = 6×10¯⁹ C

Voltage 1 (V₁) =?

Q = C₁V₁

6×10¯⁹ = 6×10¯¹⁰ × V₁

Divide both side by 6×10¯¹⁰

V₁ = 6×10¯⁹ / 6×10¯¹⁰

V₁ = 10 V

2. Determination of the voltage across 300 pF.

Capicitance 2 (C₂) = 300 pF = 3×10¯¹⁰ F

Charge (Q) = 6×10¯⁹ C

Voltage 2 (V₂) =?

Q = C₂V₂

6×10¯⁹ = 3×10¯¹⁰ × V₂

Divide both side by 3×10¯¹⁰

V₂ = 6×10¯⁹ / 3×10¯¹⁰

V₂ = 20 V

3. Determination of the voltage across 200 pF.

Capicitance 3 (C₃) = 200 pF = 2×10¯¹⁰ F

Charge (Q) = 6×10¯⁹ C

Voltage 3 (V₃) =?

Q = C₃V₃

6×10¯⁹ = 2×10¯¹⁰ × V₃

Divide both side by 2×10¯¹⁰

V₃ = 6×10¯⁹ / 2×10¯¹⁰

V₃ = 30 V

7 0
2 years ago
A sample of copper with a mass of 1.80 kg, initially at a temperature of 150.0°C, is in a well-insulated container. Water at a t
user100 [1]

Answer:

the mass of water is 0.3 Kg

Explanation:

since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:

Q water + Q copper = Q surroundings =0 (insulated)

Q water = - Q copper

since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature

and denoting w as water and co as copper :

m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) =  m co * c co * (T co - Ti eq)

m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]

We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C

if we assume that both specific heats do not change during the process (or the change is insignificant)

m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]

m w= 1.80 kg *  0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))

m w= 0.3 kg

7 0
3 years ago
Complete the following:
masha68 [24]

When light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.

To find the answer, we have to know about the rules followed by drawing ray-diagram.

<h3>What are the rules obeyed by light rays?</h3>
  • If the incident ray is parallel to the principal axis, the refracted ray will pass through the opposite side's focus.
  • The refracted ray becomes parallel to the major axis if the incident ray passes through the focus.
  • The refracted ray follows the same path if the incident light passes through the center of the curve.

Thus, we can conclude that, when light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.

Learn more about refraction by a lens here:

brainly.com/question/13095658

#SPJ1

8 0
1 year ago
Other questions:
  • Un vas plin cu lichid cântăreşte 175kg. Ceea ce reprezintă de 5 ori masa vasului gol. Ştiind că volumul interior al vasului este
    13·1 answer
  • Which of the following statements are true about the international system of measurement?
    6·1 answer
  • A viscous liquid is sheared between two parallel disks of radius �, one of which rotates with angular speed Ω, while the other i
    14·1 answer
  • HELP PLEASE! THANKS!!
    11·2 answers
  • Where the value of g is maximum
    12·2 answers
  • A boat moves through the water of a river at 4.72 m/s relative to the water, regardless of the boat’s direction. If the current
    15·2 answers
  • Spaceship 1 and Spaceship 2 have equal masses of 200 kg. They collide.
    11·2 answers
  • QUESTION 1<br> 67.2 kilometers = how many decameters
    10·2 answers
  • An airplane travels from st louis to portland, oregon in 4.33 hours. if the distance traveled is 2,742 kilometers, what is the a
    11·2 answers
  • Which term, when divided by volume, equals density?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!